论文标题

$ j/ψ$的颜色贡献,用于软gluon分解的B工厂的包容性生产

Color-octet contributions for $J/ψ$ inclusive production at B factories in soft gluon factorization

论文作者

Chen, An-Ping, Jin, Xiao-Bo, Ma, Yan-Qing, Meng, Ce

论文摘要

我们研究了$ j/ψ$在B工厂中的颜色贡献,即$ e^ + e^ - \ to j/ψ(^3p_j^{[8]},^1s_0^{[8]} {[8]}) $ j/ψ$能量谱以一种可扰动的短途硬零件的形式表示,该零件用一维软gluon分布(SGD)卷曲。在这种方法中,可以自然重新定义源自运动效应的速度校正系列。短途硬零件已通过分析计算为$α_s$的近代领先顺序。 SGD的重新归一化组方程已得出和求解,该方程恢复了Sudakov对数起源于柔软的Gluon排放。我们的最终结果为颜色矩阵元件提供了与从强子山着壁提取的颜色矩阵元件相一致的上限。这可以缓解NRQCD分解中众所周知的普遍性问题。 作为比较,我们还通过分析了NRQCD分解中的短途硬零件,而Sudakov对数通过使用软共线性有效理论重新点亮。比较表明,在SGF中重新定义的运动效应的速度校正对于现象学研究很重要。此外,发现Sudakov对数起源于柔软的Gluon排放非常重要,而Sudakov对数却源于射流功能。因此,SGF中的部分Sudakov重新召集已经捕获了主要物理学。

We have studied color-octet contributions for $J/ψ$ inclusive production at B factories, i.e., $e^+e^-\to J/ψ(^3P_J^{[8]},^1S_0^{[8]}) + X_{\mathrm{non}-c\bar c}$, using the soft gluon factorization (SGF) approach, in which the $J/ψ$ energy spectrum is expressed in a form of perturbatively calculable short-distance hard parts convoluted with one-dimensional soft gluon distributions (SGDs). The series of velocity corrections originated from kinematic effect can be naturally resummed in this approach. Short-distance hard parts have been calculated analytically to next-to-leading order in $α_s$. Renormalization group equations for SGDs have been derived and solved, which resums Sudakov logarithms originated from soft gluon emissions. Our final result gives a upper bound for color-octet matrix elements consistent with that extracted from hadron colliders. This may relieve the well-known universality problem in the NRQCD factorization. As a comparison, we also analytically calculated short-distance hard parts in the NRQCD factorization, with Sudakov logarithms resummed by using soft collinear effective theory. The comparison shows that velocity corrections from kinematic effect, which have been resummed in SGF, are significant for phenomenological study. Furthermore, it is found that Sudakov logarithms originated from soft gluon emissions are very important, while it is not the case for Sudakov logarithms originated from jet function. Therefore, the partial Sudakov resummation in SGF has already captured the main physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源