论文标题

结构力学中未解决的物理学的局部发现:使用CutFem级别方法的建模无缝选择

Local uncovering of unresolved physics in structural mechanics: seamless choice of modelling resolution using a CutFEM level-set approach

论文作者

Mikaeili, Ehsan, Kerfriden, Pierre, Claus, Susanne

论文摘要

在本文中,我们提出了一种基于剪切有限元方法(CUTFEM)的稳健有效的未固定并发多尺度方法,用于连续核耦合。计算域是使用固定背景网格上近似签名的距离函数定义的,并使用新型的缩放技术分解为显微镜和宏观区域。变焦界面由任意与计算网格的签名距离函数表示。缩放区域内的网格在层次上精制以解析微结构。在考虑的示例中,微观结构可能包含空隙和硬夹杂物,其几何形状是通过在精制网格上插值的签名距离函数隐式定义的。 我们的缩放技术允许缩放界面以任意方式与微结构接口相交,从而在复杂几何形状的建模中具有更大的灵活性和准确性。微区域和宏区域是使用Nitsche的方法耦合的,从而确保溶液中的稳定性和准确性。使用幽灵惩罚项来确保沿缩放接口和微观结构接口的切割元素的稳定性。 为了证明我们的框架的有效性,我们将其应用于具有线性弹性和可塑性本构行为的几种异质结构。结果表明,我们的框架是强大而有效的,为此类问题提供了准确可靠的解决方案。我们提出的方法为具有复杂微观结构的结构进行多尺度建模提供了一种高度和有效的方法,并且有可能扩展到在模拟过程中需要无缝移动的问题,例如损伤生长和断裂式传播。

In this paper, we present a robust and efficient unfitted concurrent multiscale method for continuum-continuum coupling, based on the Cut Finite Element Method (CutFEM). The computational domain is defined using approximate signed distance functions over a fixed background mesh and is decomposed into microscale and macroscale regions using a novel zooming technique. The zoom interface is represented by a signed distance function intersecting the computational mesh arbitrarily. The mesh inside the zoomed region is hierarchically refined to resolve the microstructure. In the examples considered, the microstructure may contain voids and hard inclusions, and its geometry is defined implicitly by a signed distance function interpolated over the refined mesh. Our zooming technique allows the zoom interface to intersect the microstructure interface in an arbitrary fashion, enabling greater flexibility and accuracy in the modelling of complex geometries. The micro and macro regions are coupled using Nitsche's method, ensuring stability and accuracy in the solution. Ghost penalty terms are utilised to ensure the stability of cut elements along the zoom interface and the microstructure interface. To demonstrate the effectiveness of our framework, we apply it for modelling several heterogeneous structures with both linear elasticity and plasticity constitutive behaviours. The results show that our framework is robust and efficient, producing accurate and reliable solutions for such problems. Our proposed method provides a highly versatile and effective approach to multiscale modeling of structures with complex microstructures, and has the potential to be extended to problems requiring seamless moving of zooming region(s) during the simulation, such as damage growth and fracture propagation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源