论文标题

与Fusion自动编码器进行深度聚类

Deep clustering with fusion autoencoder

论文作者

Chang, Shuai

论文摘要

近年来,在聚类研究中采用深度学习技术来吸引了广泛的关注,从而产生了新开发的聚类范式,即。深群(DC)。通常,DC模型大写了自动编码器,以了解促进聚类过程的内在功能。如今,一种名为“变性自动编码器”(VAE)的生成模型在DC研究中已广泛接受。然而,普通的VAE不足以感知全面的潜在特征,从而导致群集的恶化性能。在本文中,提出了一种新颖的DC方法来解决此问题。具体而言,生成的对抗网络和VAE被合并为一个名为Fusion Autocododer(FAE)的新自动编码器,用于辨别有利于下游聚类任务的更具歧视性表示。此外,FAE是通过深层剩余网络体系结构实施的,从而进一步增强了表示能力。最后,FAE的潜在空间被转变为由深密集的神经网络所塑造的嵌入空间,用于从彼此中撤离不同的簇,并在各个簇中崩溃。在几个图像数据集上进行的实验证明了针对基线方法提出的DC模型的有效性。

Embracing the deep learning techniques for representation learning in clustering research has attracted broad attention in recent years, yielding a newly developed clustering paradigm, viz. the deep clustering (DC). Typically, the DC models capitalize on autoencoders to learn the intrinsic features which facilitate the clustering process in consequence. Nowadays, a generative model named variational autoencoder (VAE) has got wide acceptance in DC studies. Nevertheless, the plain VAE is insufficient to perceive the comprehensive latent features, leading to the deteriorative clustering performance. In this paper, a novel DC method is proposed to address this issue. Specifically, the generative adversarial network and VAE are coalesced into a new autoencoder called fusion autoencoder (FAE) for discerning more discriminative representation that benefits the downstream clustering task. Besides, the FAE is implemented with the deep residual network architecture which further enhances the representation learning ability. Finally, the latent space of the FAE is transformed to an embedding space shaped by a deep dense neural network for pulling away different clusters from each other and collapsing data points within individual clusters. Experiment conducted on several image datasets demonstrate the effectiveness of the proposed DC model against the baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源