论文标题
local2global:一种用于缩放表示图表学习的分布式方法
Local2Global: A distributed approach for scaling representation learning on graphs
论文作者
论文摘要
我们提出了一种分散的“ local2global”'图表表示学习的方法,可以使用A-Priori来扩展任何嵌入技术。我们的Local2Global方法首先将输入图分为重叠子图(或“补丁”),并为每个补丁训练本地表示形式。在第二步中,我们通过通过组同步使用来自贴片重叠的信息来估算最能使局部表示的刚体动作的集合,将局部表示形式结合到全球一致的表示中。相对于现有工作,Local2Global的一个关键区别特征是,在分布式培训期间,贴片是独立训练的,而无需经常昂贵的参数同步。这允许Local2Global扩展到大规模的工业应用,其中输入图甚至可能不适合内存,并且可以以分布式的方式存储。我们将local2global应用于不同尺寸的数据集,并表明我们的方法在边缘重建和半监督分类的规模和准确性之间取得了良好的权衡。我们还考虑了异常检测的下游任务,并展示了如何使用Local2Global来突出网络安全网络中的异常。
We propose a decentralised "local2global"' approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or "patches") and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization. A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronization during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner. We apply local2global on data sets of different sizes and show that our approach achieves a good trade-off between scale and accuracy on edge reconstruction and semi-supervised classification. We also consider the downstream task of anomaly detection and show how one can use local2global to highlight anomalies in cybersecurity networks.