论文标题
线条安排的可超过分辨率
Supersolvable resolutions of line arrangements
论文作者
论文摘要
本文的主要目的是研究线条排列的可验证分辨率的数值特性。我们在所谓的扩展方面提供了上限,以提供$ \ mathbb {p}^{2} _ {\ mathbb {c}} $中某些极端线路排列的超兑换性数字,我们表明这些数字\ textbf {not}不是由给定安排的相互作用效应确定的。
The main purpose of the present paper is to study the numerical properties of supersolvable resolutions of line arrangements. We provide upper-bounds on the so-called extension to supersolvability numbers for certain extreme line arrangements in $\mathbb{P}^{2}_{\mathbb{C}}$ and we show that these numbers \textbf{are not} determined by the intersection lattice of the given arrangement.