论文标题
部分可观测时空混沌系统的无模型预测
Large Interferometer For Exoplanets (LIFE): IV. Ideal kernel-nulling array architectures for a space-based mid-infrared nulling interferometer
论文作者
论文摘要
目的:为了检测和表征系外行星的目的,来自空间的光学干涉法是复兴,特别是从诸如拟议的大型干涉仪(生命)的大型干涉仪(Life)等任务中。默认假设是因为达尔文和TPF-I的设计研究是Emma X-Array配置是该目标的最佳体系结构。在这里,我们检查了无效干涉测量领域的新进步(例如内核无效的概念)是否挑战了这一假设。 方法:我们开发了一种工具,旨在得出大型模拟行星样品的光子限制信号与噪声比,以用于不同的体系结构和梁组合方案。我们模拟了四个基本配置:双Bracewell/X-Array和内核无效,分别具有三个,四个和五个望远镜。 结果:我们发现,使用五个孔径内核空的方案对五个望远镜的五个望远镜的配置优于搜索(查找更多行星)和表征(更快地获得更好的信号,更快)的X阵列设计。试图检测地球双胞胎(温带,在宜居区中的岩石行星),显示出比X阵列增加23%的产率时,尤其是这种情况。平均而言,我们发现五个望远镜设计收到了X阵列设计上信号的1.2倍。 结论:通过此模拟的结果,我们得出结论,Emma X阵列配置可能不是即将到来的生活任务的最佳体系结构选择,并且使用内核无效概念的五个望远镜设计可能会为同一收集区域提供更好的科学回报,但前提是实现了同一收集区域的技术解决方案。
Aims: Optical interferometry from space for the purpose of detecting and characterising exoplanets is seeing a revival, specifically from missions such as the proposed Large Interferometer For Exoplanets (LIFE). A default assumption since the design studies of Darwin and TPF-I has been that the Emma X-array configuration is the optimal architecture for this goal. Here, we examine whether new advances in the field of nulling interferometry, such as the concept of kernel nulling, challenge this assumption. Methods: We develop a tool designed to derive the photon-limited signal to noise ratio of a large sample of simulated planets for different architecture configurations and beam combination schemes. We simulate four basic configurations: the double Bracewell/X-array, and kernel nullers with three, four and five telescopes respectively. Results: We find that a configuration of five telescopes in a pentagonal shape, using a five aperture kernel nulling scheme, outperforms the X-array design in both search (finding more planets) and characterisation (obtaining better signal, faster) when total collecting area is conserved. This is especially the case when trying to detect Earth twins (temperate, rocky planets in the habitable zone), showing a 23% yield increase over the X-array. On average, we find that a five telescope design receives 1.2 times the signal over the X-array design. Conclusions: With the results of this simulation, we conclude that the Emma X-array configuration may not be the best architecture choice for the upcoming LIFE mission, and that a five telescope design utilising kernel nulling concepts will likely provide better scientific return for the same collecting area, provided that technical solutions for the required achromatic phase shifts can be implemented.