论文标题
部分可观测时空混沌系统的无模型预测
Type IIB parabolic ($p,q$)-strings from M2-branes with fluxes
论文作者
论文摘要
我们扩展了Schwarz [1]的工作,以表明IIB型超对称性($ p,Q $)的绑定状态 - 圈子上的字符串与M2-branes不可约束$ T^2 $相关,或者与非平凡的WorldVolume Fluxes相关。除了这一扩展,我们考虑了M2-Brane的Hamiltonian,其$ c _ {\ pm} $通量在带有单片的象征性圆环捆绑包上。特别是,我们分析了抛物线寄生虫的相关情况。我们表明,哈密顿量是根据共同体模块定义的。我们还发现,在不相等的共同变量之间的转换下,群众运营商是不变的。这些共同变量对给定通量的非平凡单曲束对不等的圆环束进行了分类。我们获得了它们相关的($ p,q $) - 通过减少双维的字符串,在$ sl的抛物线子组(2,\ mathbb {q})$下是不变的。这是相关测量的超级仪表对称性的起源。这些结合状态也可能与IIB型字符串理论降低的抛物线Scherk-Schwarz有关。
We extend the work of Schwarz [1] to show that bound states of type IIB supersymmetric ($p, q$)-strings on a circle are associated with M2-branes irreducibly wrapped on $T^2$, or equivalently with nontrivial worldvolume fluxes. Beyond this extension we consider the Hamiltonian of an M2-brane with $C_{\pm}$ fluxes formulated on a symplectic torus bundle with monodromy. In particular, we analyze the relevant case when the monodromy is parabolic. We show that the Hamiltonian is defined in terms of the coinvariant module. We also find that the mass operator is invariant under transformations between inequivalent coinvariants. These coinvariants classify the inequivalent classes of twisted torus bundles with nontrivial monodromy for a given flux. We obtain their associated ($p,q$)-strings via double dimensional reduction, which are invariant under a parabolic subgroup of $SL(2,\mathbb{Q})$. This is the origin of the gauge symmetry of the associated gauged supergravity. These bound states could also be related to the parabolic Scherk-Schwarz reductions of type IIB string theory.