论文标题

从机器学习和因果关系中的双钙钛矿氧化物阳离子排序的见解

Insights into cation ordering of double perovskite oxides from machine learning and causal relations

论文作者

Ghosh, Ayana, Palanichamy, Gayathri, Trujillo, Dennis P., Shaikh, Monirul, Ghosh, Saurabh

论文摘要

这项工作研究了使用第一原理理论计算与机器学习(ML)和因果关系结合的双钙晶的阳离子顺序的起源。我们已经考虑了过渡金属离子家族的A,A,B和B'的各种氧化态,以构建多样化的组成空间。采用传统ML分类算法(例如随机森林(RF))的常规框架以及包括几何驱动和关键结构模式在内的适当特征会导致高度准确的A位置阳离子顺序预测(〜98%)。我们已经通过涉及决策路径的分析,概率置信绑定的分配以及最终引入直接非高斯无环结构方程模型来评估ML模型的准确性。我们的研究表明,结构模式是分类,柱状和岩石盐排序分类的最重要特征。对于清晰的分层排序,A和A'之间的电荷差是最重要的特征,进而取决于B,B'电荷分离。根据ML模型的输出,我们设计了具有这些功能的功能形式,以得出能量差异,从而形成清晰的分层排序。 Landau自由能膨胀中倾斜,旋转和A位抗抗纤维自由位移之间的三联耦合成为形成A位置阳离子排序的必要条件。

This work investigates the origins of cation ordering of double perovskites using first-principles theory computations combined with machine learning (ML) and causal relations. We have considered various oxidation states of A, A', B, and B' from the family of transition metal ions to construct a diverse compositional space. A conventional framework employing traditional ML classification algorithms such as Random Forest (RF) coupled with appropriate features including geometry-driven and key structural modes leads to highly accurate prediction (~98%) of A-site cation ordering. We have evaluated the accuracy of ML models by entailing analyses of decision paths, assignments of probabilistic confidence bound, and finally introducing a direct non-Gaussian acyclic structural equation model to investigate causality. Our study suggests that the structural modes are the most important features for classifying layered, columnar and rock-salt ordering. For clear layered ordering, the charge difference between the A and A' is the most important feature which in turn depends on the B, B' charge separation. Based on the outputs from ML models, we have designed functional forms with these features to derive energy differences forming clear layered ordering. The trilinear coupling between tilt, rotation, and A-site antiferroelectric displacement in Landau free-energy expansion becomes the necessary condition behind the formation of A-site cation ordering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源