论文标题
$ \ langle 2 \ rangle $ - 极性希尔伯特(Hilbert of Generic K3表面)的几何描述
Geometric description of $\langle 2 \rangle$-polarised Hilbert squares of generic K3 surfaces
论文作者
论文摘要
度量2T度的通用K3表面是一种通用的复合物射击K3表面,其PICARD组由宽敞的除数类产生,其相对于交点形式为2T。我们表明,如果x是2 t> 2 $的通用K3表面的希尔伯特广场,以便x接纳了带有$ q_x(d)= 2 $的足够的除数,其中$ q_x $ beauville-bogomolov-fujiki表格,那么x是双epwextic。
A generic K3 surface of degree 2t is a general complex projective K3 surface whose Picard group is generated by the class of an ample divisor whose with respect to the intersection form is 2t. We show that if X is the Hilbert square of a generic K3 surface of degree 2t, with $t > 2$, such that X admits an ample divisor with $q_X(D)=2$, where $q_X$ Beauville-Bogomolov-Fujiki form, then X is a double EPW sextic.