论文标题

相互作用的bose气体盒子的自由能

The free energy of a box-version of the interacting Bose gas

论文作者

Collin, Orphée, Jahnel, Benedikt, König, Wolfgang

论文摘要

相互作用的量子bose气体是许多布朗桥(循环)的随机集合,这些长度有各种长度,并且在循环的任何一对腿之间相互作用。它是标准的数学模型之一,在其中寻求著名的Bose-Einstein凝结相过渡的证明。我们在确定性框中,而不是布朗周期中引入了模型的简化版本,作为参考泊松点过程的标记(为简单起见,以$ \ Mathbb Z^d $而不是$ \ Mathbb r^d $)。 对于粒子密度的任何值,我们在热力学限制中获得了热力学限制中的明确且可解释的变异公式。该公式具有模型的所有相关物理量,例如微观和宏观粒子密度,以及它们的相互和自我强度及其熵。证明方法包括针对标记的泊松点过程的两步大驱动方法,并明确区分了小标记。 在特征公式中,明确可以看到每个显微镜粒子和宏观部分的统计。后者收到了冷凝物的解释。该公式使我们能够证明极限自由能的许多属性是粒子密度的函数,例如不同的上和下限,以及在临界阈值(如果是有限的话)下方和上方的定性图片。这证明了相变的修改饱和性。但是,我们尚未成功证明这种阶段过渡的存在。

The interacting quantum Bose gas is a random ensemble of many Brownian bridges (cycles) of various lengths with interactions between any pair of legs of the cycles. It is one of the standard mathematical models in which a proof for the famous Bose-Einstein condensation phase transition is sought for. We introduce a simplified version of the model with an organisation of the particles in deterministic boxes instead of Brownian cycles as the marks of a reference Poisson point process (for simplicity, in $\mathbb Z^d$ instead of $\mathbb R^d$). We derive an explicit and interpretable variational formula in the thermodynamic limit for the limiting free energy of the canonical ensemble for any value of the particle density. This formula features all relevant physical quantities of the model, like the microscopic and the macroscopic particle densities, together with their mutual and self-energies and their entropies. The proof method comprises a two-step large-deviation approach for marked Poisson point processes and an explicit distinction into small and large marks. In the characteristic formula, each of the microscopic particles and the statistics of the macroscopic part of the configuration are seen explicitly; the latter receives the interpretation of the condensate. The formula enables us to prove a number of properties of the limiting free energy as a function of the particle density, like differentiability and explicit upper and lower bounds, and a qualitative picture below and above the critical threshold (if it is finite). This proves a modified saturation nature of the phase transition. However, we have not yet succeeded in proving the existence of this phase transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源