论文标题
supersolid devil在光学晶格中的自旋轨道耦合玻色子的楼梯
Supersolid Devil's Staircases of Spin-Orbit-Coupled Bosons in Optical Lattices
论文作者
论文摘要
我们研究了装有光学晶格中的自旋轨道耦合玻色子的超old魔的楼梯的出现。我们考虑通过局部旋转依赖性相互作用相互作用的伪旋转的二维和三维系统。这些相互作用与自旋轨道耦合产生与晶格间距相称的长度尺度。这种可相称的能力导致了魔鬼的超old虫的楼梯,并带有分形的豪斯多夫尺寸,这是由均匀的超富叶相产生的。我们表明,umklapp过程对于相称的超胚膜的存在至关重要,而且没有它们,魔鬼的楼梯就不存在。最后,我们强调了结果的普遍性,建议实验可以揭示这些异常预测,并讨论$^{87} $ rb的潜在应用。
We study the emergence of supersolid Devil's staircases of spin-orbit coupled bosons loaded in optical lattices. We consider two- and three-dimensional systems of pseudo-spin-$1/2$ bosons interacting via local spin-dependent interactions. These interactions together with spin-orbit coupling produce length scales that are commensurate to the lattice spacing. This commensurability leads to Devil's staircases of supersolids, with fractal Hausdorff dimensions, which arise from uniform superfluid phases. We show that umklapp processes are essential for the existence of commensurate supersolids, and that without them the Devil's staircase does not exist. Lastly, we emphasize the generality of our results, suggest experiments that can unveil these unusual predictions, and discuss potential applications to the case of $^{87}$Rb.