论文标题

战略性的均值变化投资在均值股票收益下

Strategic mean-variance investing under mean-reverting stock returns

论文作者

Jarner, Søren Fiig

论文摘要

在本报告中,我们将战略(确定性)分配给债券和股票,从而在给定的投资范围内实现了最佳的均值差异权衡。基本的资本市场具有均等回报的均值过程,而感兴趣的主要问题是,均值逆转如何影响最佳策略和最终的投资组合价值在地平线上。特别是,我们有兴趣知道在哪些假设以及在哪个视野上,风险回报的权衡是如此有利,以至于投资组合的价值从下方有效地界定。在这种情况下,我们可能会认为投资组合在“保证”(下限)的顶部提供了随机的多余回报。 得出最佳策略是数学金融中众所周知的学科。现代方法是为了给定的效用功能而导致最高预期效用的策略来得出和解决汉密尔顿 - 雅各比 - 贝尔曼(HJB)微分方程。但是,由于两个原因,我们在这项工作中以不同的方式处理该问题。首先,我们希望仅根据时间来找到最佳策略,即,我们不允许对资本市场状态变量的依赖性,也不允许投资组合本身的价值。这种约束是长期投资者的战略分配的特征。其次,为了了解均值逆转的作用,我们希望确定整个极端策略的家庭,而不仅仅是最佳策略。为了得出我们采用的策略,我们从变化的计算中采用方法,而不是通常的HJB方法。

In this report we derive the strategic (deterministic) allocation to bonds and stocks resulting in the optimal mean-variance trade-off on a given investment horizon. The underlying capital market features a mean-reverting process for equity returns, and the primary question of interest is how mean-reversion effects the optimal strategy and the resulting portfolio value at the horizon. In particular, we are interested in knowing under which assumptions and on which horizons, the risk-reward trade-off is so favourable that the value of the portfolio is effectively bounded from below on the horizon. In this case, we might think of the portfolio as providing a stochastic excess return on top of a "guarantee" (the lower bound). Deriving optimal strategies is a well-known discipline in mathematical finance. The modern approach is to derive and solve the Hamilton-Jacobi-Bellman (HJB) differential equation characterizing the strategy leading to highest expected utility, for given utility function. However, for two reasons we approach the problem differently in this work. First, we wish to find the optimal strategy depending on time only, i.e., we do not allow for dependencies on capital market state variables, nor the value of the portfolio itself. This constraint characterizes the strategic allocation of long-term investors. Second, to gain insights on the role of mean-reversion, we wish to identify the entire family of extremal strategies, not only the optimal strategies. To derive the strategies we employ methods from calculus of variations, rather than the usual HJB approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源