论文标题

等离子体不稳定性在相对论辐射介导的冲击中的作用:稳定性分析和粒子中的模拟

The role of plasma instabilities in relativistic radiation mediated shocks: stability analysis and particle-in-cell simulations

论文作者

Vanthieghem, Arno, Mahlmann, Jens F., Levinson, Amir, Philippov, Alexander A., Nakar, Ehud, Fiuza, Frederico

论文摘要

相对论辐射介导的冲击(RRMS)可能在巨大的宇宙爆炸中形成。这种冲击的结构和发射受冲击过渡层内的电子峰值生成的大量产生。最近指出的是,冲击中的大量正子导致不同血浆成分的速度分离,这有望引起血浆不稳定性的快速增长。在本文中,我们研究了在带有成对并受辐射力的电子离子等离子体中生长的等离子体微生迹症的层次结构。线性稳定性分析表明,这种系统对各种等离子体模式的生长不稳定,这最终由离子和对之间的相对漂移驱动的当前细丝不稳定性所支配。这些结果通过粒子中的模拟来验证,这些模拟进一步探测了不稳定性的非线性状态,以及微涡轮电磁场中的成对离子耦合。基于此分析,我们通过微扰动性中的螺距角度散射得出了颗粒的降低的传输方程,并证明它可以搭配不同的物种并通过类似焦耳的加热导致非绝热压缩。对成对的加热,并且可以想象,由微扰动性引起的非热分布的形成会以当前单单流体模型未划分的方式影响观察到的冲击爆发信号。

Relativistic radiation mediated shocks (RRMS) likely form in prodigious cosmic explosions. The structure and emission of such shocks is regulated by copious production of electron-positron pairs inside the shock transition layer. It has been pointed out recently that substantial abundance of positrons inside the shock leads to a velocity separation of the different plasma constituents, which is expected to induce a rapid growth of plasma instabilities. In this paper, we study the hierarchy of plasma microinstabilities growing in an electron-ion plasma loaded with pairs and subject to a radiation force. Linear stability analysis indicates that such a system is unstable to the growth of various plasma modes which ultimately become dominated by a current filamentation instability driven by the relative drift between the ions and the pairs. These results are validated by particle-in-cell simulations that further probe the nonlinear regime of the instabilities, and the pair-ion coupling in the microturbulent electromagnetic field. Based on this analysis, we derive a reduced transport equation for the particles via pitch angle scattering in the microturbulence and demonstrate that it can couple the different species and lead to nonadiabatic compression via a Joule-like heating. The heating of the pairs and, conceivably, the formation of nonthermal distributions, arising from the microturbulence, can affect the observed shock breakout signal in ways unaccounted for by current single-fluid models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源