论文标题

图形平均曲率流具有有界双层曲率的曲率

Graphical mean curvature flow with bounded bi-Ricci curvature

论文作者

Assimos, Renan, Savas-Halilaj, Andreas, Smoczyk, Knut

论文摘要

我们考虑严格区域的图形平均曲率流量减少地图$ f:m \至n $,其中$ m $是尺寸的紧凑riemannian歧管$ m> 1 $ and $ n $ a $ n $是一个完整的里曼尼亚人的界面表面。我们证明了该流量的长期存在,并且保留了严格的区域降低属性,当Bi-ricci曲率$ bric_m $ $ m $的$ m $从下面界定为$ n $的截面曲率$σ_n$。此外,如果$ ric_m \ ge \ sup \ {0,{\ sup}_nσ_n\} $,我们将获得平滑收敛到最小地图。这些结果显着改善了Codimension $ 2 $中图形平均曲率流的已知结果。

We consider the graphical mean curvature flow of strictly area decreasing maps $f:M\to N$, where $M$ is a compact Riemannian manifold of dimension $m>1$ and $N$ a complete Riemannian surface of bounded geometry. We prove long-time existence of the flow and that the strictly area decreasing property is preserved, when the bi-Ricci curvature $BRic_M$ of $M$ is bounded from below by the sectional curvature $σ_N$ of $N$. In addition, we obtain smooth convergence to a minimal map if $Ric_M\ge\sup\{0,{\sup}_Nσ_N\}$. These results significantly improve known results on the graphical mean curvature flow in codimension $2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源