论文标题

使用卷积神经网络的银河系的3D灭绝映射:在Cari​​na Arm区域的方法和演示的呈现

3D extinction mapping of the Milky Way using Convolutional Neural Networks: Presentation of the method and demonstration in the Carina Arm region

论文作者

Cornu, D., Montillaud, J., Marshall, D. J., Robin, A. C., Cambrésy, L.

论文摘要

语境。已经提出了几种方法来构建银河系(MW)的3D灭绝图,最常基于贝叶斯方法。尽管某些研究在其部分过程中采用了机器学习(ML)方法,或者是针对特定目标的,但迄今为止,尚未仅基于神经网络方法的大量MW的3D灭绝图。目标。我们的目标是将深度学习作为建立MW的3D灭绝地图的解决方案。方法。我们使用Cianna框架构建了卷积神经网络(CNN),并使用合成2个MASS数据训练了它。我们使用BesançonGalaxy模型生成模拟星目录,并使用1D高斯随机字段来模拟灭绝配置文件。从这些数据中,我们使用相应的灭绝配置文件作为目标,计算了颜色标记图(CMD)来训练网络。具有观察到的2个CMD的正向通行证提供了视线网格的消光轮廓估计。结果。我们通过数据模拟了网络训练了网络,在Cari​​na螺旋臂切线区域进行了模拟视线,并获得了该地区大型部门的3D灭绝图($ L = 257-303 $ deg,$ | b | \ le 5 $ d $ 5 $ DEG),分别为$ 100 $ PC和$ 30 $ ARCMIN,以及$ arcmin,以及$ kpc $ kpc kpc。尽管每个视线都是在远期独立计算的,但所谓的神伪影的手指比其他许多3D灭绝地图弱。我们发现,我们的CNN有效地利用了视线范围的冗余,使我们能够同时使用9个视线来训练它以构建整个地图。结论。我们发现深度学习是一种可靠的方法,可以从大型调查中产生3D灭绝地图。通过这种方法,我们希望在不交叉匹配的情况下轻松结合异质调查,因此可以以互补的方式利用多个调查。

Context. Several methods have been proposed to build 3D extinction maps of the Milky Way (MW), most often based on Bayesian approaches. Although some studies employed machine learning (ML) methods in part of their procedure, or to specific targets, no 3D extinction map of a large volume of the MW solely based on a Neural Network method has been reported so far. Aims. We aim to apply deep learning as a solution to build 3D extinction maps of the MW. Methods. We built a convolutional neural network (CNN) using the CIANNA framework, and trained it with synthetic 2MASS data. We used the Besançon Galaxy model to generate mock star catalogs, and 1D Gaussian random fields to simulate the extinction profiles. From these data we computed color-magnitude diagrams (CMDs) to train the network, using the corresponding extinction profiles as targets. A forward pass with observed 2MASS CMDs provided extinction profile estimates for a grid of lines of sight. Results. We trained our network with data simulating lines of sight in the area of the Carina spiral arm tangent and obtained a 3D extinction map for a large sector in this region ($l = 257 - 303$ deg, $|b| \le 5$ deg), with distance and angular resolutions of $100$ pc and $30$ arcmin, respectively, and reaching up to $\sim 10$ kpc. Although each sightline is computed independently in the forward phase, the so-called fingers-of-God artifacts are weaker than in many other 3D extinction maps. We found that our CNN was efficient in taking advantage of redundancy across lines of sight, enabling us to train it with only 9 sightlines simultaneously to build the whole map. Conclusions. We found deep learning to be a reliable approach to produce 3D extinction maps from large surveys. With this methodology, we expect to easily combine heterogeneous surveys without cross-matching, and therefore to exploit several surveys in a complementary fashion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源