论文标题
用序数网络和机器学习确定液晶特性
Determining liquid crystal properties with ordinal networks and machine learning
论文作者
论文摘要
机器学习方法对于材料科学的发展变得越来越重要。尽管如此,在这些系统的开发中使用图像分析仍然是最新且尚未逐渐被拼写的,尤其是在通过光学成像技术(例如液晶)中经常研究的材料中。在这里,我们将最近提出的序数网络方法应用于液晶实验样品获得的光学纹理中,并将其与简单的统计学习算法共同使用此表示,以研究这些材料的不同物理特性。我们的研究表明,仅由24个节点形成的序数网络编码有关液晶特性的关键信息,从而使我们能够训练能够识别和分类中间体型转变的简单机器学习模型,从而区分用于诱导手性中断的不同掺杂浓度,并以诱导手性中的间态体进行良好准确的样本温度。我们方法的精确性和可伸缩性表明,在涉及大规模数据集或实时监视系统的情况下,它可用于探测不同材料的特性。
Machine learning methods are becoming increasingly important for the development of materials science. In spite of this, the use of image analysis in the development of these systems is still recent and underexplored, especially in materials often studied via optical imaging techniques such as liquid crystals. Here we apply the recently proposed method of ordinal networks to map optical textures obtained from experimental samples of liquid crystals into complex networks and use this representation jointly with a simple statistical learning algorithm to investigate different physical properties of these materials. Our research demonstrates that ordinal networks formed by only 24 nodes encode crucial information about liquid crystal properties, thus allowing us to train simple machine learning models capable of identifying and classifying mesophase transitions, distinguishing among different doping concentrations used to induce chiral mesophases, and predicting sample temperatures with outstanding accuracy. The precision and scalability of our approach indicate it can be used to probe properties of different materials in situations involving large-scale datasets or real-time monitoring systems.