论文标题

对二阶关键椭圆方程的签名解决方案的稳定性和不稳定性结果

Stability and instability results for sign-changing solutions to second-order critical elliptic equations

论文作者

Premoselli, Bruno, Vétois, Jérôme

论文摘要

在平滑,封闭的Riemannian歧管$ \ left(m,g \右)$的$ n \ ge3 $的$中,我们考虑固定的schrödinger方程$Δ_GU+H_0U = \ weft | u \ u \ u \ right | u \ right |^{2^* - 2^*-2} - 2} - 2} - 2} u $,wher c^1 \ left(m \ right)$和$ 2^*:= \ frac {2n} {n-2} $。我们证明,在$ c^1 \ left(m \右)$中的潜在函数$ h_0 $的扰动之后,以$ h^1 \ left(m \右)为$ c^2 $ topology topaction中的签名更改解决方案集。我们在假设$ \ left(m,g \右)$的假设下获得了此结果,$ n \ ge7 $和$ h_0 \ ne \ ne \ ne \ frac {n-2} {4 \ left(n-1 \ right)} \ fript(n-1 \ right)} \ text} {scal} _g $在$ m $中的所有点,$ \ cl scale as clate scale as cl scale}然后,我们在每个维度$ n \ ge3 $中提供反例,以显示这些假设的最佳性。

On a smooth, closed Riemannian manifold $\left(M,g\right)$ of dimension $n\ge3$, we consider the stationary Schrödinger equation $Δ_gu+h_0u=\left|u\right|^{2^*-2}u$, where $Δ_g:=-\text{div}_g\nabla$, $h_0\in C^1\left(M\right)$ and $2^* :=\frac{2n}{n-2}$. We prove that, up to perturbations of the potential function $h_0$ in $C^1\left(M\right)$, the sets of sign-changing solutions that are bounded in $H^1\left(M\right)$ are precompact in the $C^2$ topology. We obtain this result under the assumptions that $\left(M,g\right)$ is locally conformally flat, $n\ge7$ and $h_0\ne\frac{n-2}{4\left(n-1\right)}\text{Scal}_g$ at all points in $M$, where $\text{Scal}_g$ is the scalar curvature of the manifold. We then provide counterexamples in every dimension $n\ge3$ showing the optimality of these assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源