论文标题

COQ中的机械化匹配逻辑

Mechanizing Matching Logic In Coq

论文作者

Bereczky, Péter, Chen, Xiaohong, Horpácsi, Dániel, Peña, Lucas, Tušil, Jan

论文摘要

匹配逻辑是一种形式主义,用于使用模式和模式匹配来指定数学结构和推理。它在受欢迎程度上越来越流行,已被用来定义许多逻辑系统,例如具有递归定义和线性时间逻辑的分离逻辑。此外,它是K语义框架的逻辑基础,该框架用于为多种现实世界的语言构建实用验证程序。尽管是一个基本的正式系统,该系统适合实质性理论,但匹配的逻辑仍缺乏通用的,机器检查的形式化。因此,我们使用COQ证明助手正式化匹配逻辑。具体来说,我们创建了匹配逻辑的新表示形式,该逻辑使用本地无名编码,并在COQ证明助手中正式化了此表示的语法,语义和证明系统。至关重要的是,我们证明了正式的证明系统的合理性,并提供了一种在COQ中执行交互式匹配逻辑推理的方法。我们认为,这项工作为匹配逻辑,其模型和证明系统的推理提供了以前未开发的途径。

Matching logic is a formalism for specifying, and reasoning about, mathematical structures, using patterns and pattern matching. Growing in popularity, it has been used to define many logical systems such as separation logic with recursive definitions and linear temporal logic. In addition, it serves as the logical foundation of the K semantic framework, which was used to build practical verifiers for a number of real-world languages. Despite being a fundamental formal system accommodating substantial theories, matching logic lacks a general-purpose, machine-checked formalization. Hence, we formalize matching logic using the Coq proof assistant. Specifically, we create a new representation of matching logic that uses a locally nameless encoding, and we formalize the syntax, semantics, and proof system of this representation in the Coq proof assistant. Crucially, we prove the soundness of the formalized proof system and provide a means to carry out interactive matching logic reasoning in Coq. We believe this work provides a previously unexplored avenue for reasoning about matching logic, its models, and the proof system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源