论文标题

坚固的安全控制合成,具有干扰观察者的控制屏障功能

Robust Safe Control Synthesis with Disturbance Observer-Based Control Barrier Functions

论文作者

Daş, Ersin, Murray, Richard M.

论文摘要

在复杂的实时操作环境中,外部干扰和不确定性会对动态系统的安全性,稳定性和性能产生不利影响。本文在存在干扰的情况下提供了具有控制Lyapunov函数(CLF)和控制屏障功能(CBF)的稳定稳定安全控制器合成框架。使用CBF的一阶时间导数绑定的误差,可以调整高增益输入观察者方法,以估计CBF的随时间变化的未建模动力学。这种方法导致具有设计参数的易于调节的低订单干扰估计器结构,因为它仅利用CBF约束。估计的未知输入和相关误差绑定用于通过制定CLF-CBF二次程序来确保稳健的安全性和指数稳定性。所提出的方法适用于相对程度和更高的相对程度CBF约束。使用自适应巡航控制系统和具有外部干扰的Segway平台的数值模拟证明了所提出方法的功效。

In a complex real-time operating environment, external disturbances and uncertainties adversely affect the safety, stability, and performance of dynamical systems. This paper presents a robust stabilizing safety-critical controller synthesis framework with control Lyapunov functions (CLFs) and control barrier functions (CBFs) in the presence of disturbance. A high-gain input observer method is adapted to estimate the time-varying unmodelled dynamics of the CBF with an error bound using the first-order time derivative of the CBF. This approach leads to an easily tunable low order disturbance estimator structure with a design parameter as it utilizes only the CBF constraint. The estimated unknown input and associated error bound are used to ensure robust safety and exponential stability by formulating a CLF-CBF quadratic program. The proposed method is applicable to both relative degree one and higher relative degree CBF constraints. The efficacy of the proposed approach is demonstrated using a numerical simulations of an adaptive cruise control system and a Segway platform with an external disturbance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源