论文标题

不确定性意识到的多视图表示学习

Uncertainty-Aware Multi-View Representation Learning

论文作者

Geng, Yu, Han, Zongbo, Zhang, Changqing, Hu, Qinghua

论文摘要

通过探索其中的基本互补信息从不同的数据观点中学习,可以使表示形式具有更强的表达能力。但是,高维特征倾向于包含噪声,此外,数据的质量通常会因不同的样本而变化(甚至针对不同的视图),即,一种视图对于一个样本来说可能是有益的,但对于另一个样本而言却不是这种情况。因此,在无监督的设置下集成多视图嘈杂数据是非常具有挑战性的。传统的多视图方法要么简单地以同等的重视对待每个视图,要么调整不同视图的权重与固定值,这不足以捕获多视图数据中的动态噪声。在这项工作中,我们设计了一种新颖的无监督的多视图学习方法,称为动态不确定性感知网络(DUA-NETS)。在从世代角度估计的数据的不确定性的指导下,从多个视图中进行了内在信息,以获得无噪声表示。在不确定性的帮助下,Dua-nets根据数据质量权衡单个样本的每一个视图,以便可以完全利用高质量的样品(或视图),而嘈杂样本(或视图)的影响将被减轻。我们的模型在广泛的实验中取得了出色的性能,并显示了嘈杂数据的鲁棒性。

Learning from different data views by exploring the underlying complementary information among them can endow the representation with stronger expressive ability. However, high-dimensional features tend to contain noise, and furthermore, the quality of data usually varies for different samples (even for different views), i.e., one view may be informative for one sample but not the case for another. Therefore, it is quite challenging to integrate multi-view noisy data under unsupervised setting. Traditional multi-view methods either simply treat each view with equal importance or tune the weights of different views to fixed values, which are insufficient to capture the dynamic noise in multi-view data. In this work, we devise a novel unsupervised multi-view learning approach, termed as Dynamic Uncertainty-Aware Networks (DUA-Nets). Guided by the uncertainty of data estimated from the generation perspective, intrinsic information from multiple views is integrated to obtain noise-free representations. Under the help of uncertainty, DUA-Nets weigh each view of individual sample according to data quality so that the high-quality samples (or views) can be fully exploited while the effects from the noisy samples (or views) will be alleviated. Our model achieves superior performance in extensive experiments and shows the robustness to noisy data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源