论文标题

ONEDCONV:用于转换不变代表的广义卷积

OneDConv: Generalized Convolution For Transform-Invariant Representation

论文作者

Zhang, Tong, Weng, Haohan, Yi, Ke, Chen, C. L. Philip

论文摘要

卷积神经网络(CNN)在各种视觉任务中表现出了强大的力量。但是,缺乏转换不变的财产限制了他们在复杂的现实情况中的进一步应用。在这项工作中,我们提出了一种新颖的广义一个维度卷积运算符(ONEDCONV),该维度卷积运算符(ONEDCONV),该操作基于计算和参数有效的方式,基于输入特征动态转换卷积内核。提出的操作员可以自然提取转换不变的功能。它可以提高卷积的鲁棒性和概括,而无需牺牲公共图像的性能。拟议的OnEDCONV操作员可以替代香草卷积,因此可以将其纳入当前流行的卷积架构中,并容易端到端训练。在几个流行的基准测试中,OnedConv在规范和扭曲的图像中均优于原始卷积操作和其他提出的模型。

Convolutional Neural Networks (CNNs) have exhibited their great power in a variety of vision tasks. However, the lack of transform-invariant property limits their further applications in complicated real-world scenarios. In this work, we proposed a novel generalized one dimension convolutional operator (OneDConv), which dynamically transforms the convolution kernels based on the input features in a computationally and parametrically efficient manner. The proposed operator can extract the transform-invariant features naturally. It improves the robustness and generalization of convolution without sacrificing the performance on common images. The proposed OneDConv operator can substitute the vanilla convolution, thus it can be incorporated into current popular convolutional architectures and trained end-to-end readily. On several popular benchmarks, OneDConv outperforms the original convolution operation and other proposed models both in canonical and distorted images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源