论文标题

区域连通性的潜艇电缆网络设计

Submarine Cable Network Design for Regional Connectivity

论文作者

Wang, Tianjiao, Wang, Zengfu, Moran, Bill, Zukerman, Moshe

论文摘要

本文在不规则的二维歧管中优化了嵌入三维欧几里得空间中的不规则的二维流形中的树干分支拓扑网络的路径规划,并应用于海底有线网络计划。我们超越了我们早期对电缆构建成本(包括人工,设备和材料)的关注,以及增强电缆弹性的额外成本,以结合分支机构的整体成本(再次包括材料,建筑和铺设)以及选择潜艇降落站的选择,在这里,此类车站可以在连接区域的海岸上任何地方。这些是电缆铺设经济学的重要问题,并显着改变了模型和优化过程。我们将问题作为Steiner树问题的变体提出,但是steiner节点的数量可能会有所不同,同时遭受了惩罚。我们将其称为加权施泰纳节点问题。它与欧几里得施泰纳树的问题不同,在那里,斯坦纳点被迫拥有三学位。通常,当节点产生成本时,情况不再如此。我们能够证明我们的算法适用于超过三个学位的Steiner节点,从而在这种情况下可以优化网络成本。最佳解决方案是在多项式时间内使用动态编程实现的。

This paper optimizes path planning for a trunkand-branch topology network in an irregular 2-dimensional manifold embedded in 3-dimensional Euclidean space with application to submarine cable network planning. We go beyond our earlier focus on the costs of cable construction (including labor, equipment and materials) together with additional cost to enhance cable resilience, to incorporate the overall cost of branching units (again including material, construction and laying) and the choice of submarine cable landing stations, where such a station can be anywhere on the coast in a connected region. These are important issues for the economics of cable laying and significantly change the model and the optimization process. We pose the problem as a variant of the Steiner tree problem, but one in which the Steiner nodes can vary in number, while incurring a penalty. We refer to it as the weighted Steiner node problem. It differs from the Euclidean Steiner tree problem, where Steiner points are forced to have degree three; this is no longer the case, in general, when nodes incur a cost. We are able to prove that our algorithm is applicable to Steiner nodes with degree greater than three, enabling optimization of network costs in this context. The optimal solution is achieved in polynomialtime using dynamic programming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源