论文标题
在Wannier-Stark光学晶格时钟中的旋转轨道耦合费米的汉密尔顿工程
Hamiltonian engineering of spin-orbit coupled fermions in a Wannier-Stark optical lattice clock
论文作者
论文摘要
具有可调互动的哈密顿系统的工程为优化量子传感和探索多体系统的新兴现象的性能提供了机会。基于重力倾斜浅晶格中部分离域的Wannier-stark状态的光学晶格时钟可通过自旋轨道耦合支持出色的量子相干性和可调节的相互作用,从而呈现出强大的自旋模型实现。可以调整现场和现场相互作用的相对强度,以在“魔术”晶格深度下实现零密度变化。这种机制以及大量原子可以证明最稳定的原子钟,同时最大程度地减少与原子密度相关的关键系统不确定性。相互作用也可以通过驱动场外瓦尼尔 - 启动的过渡来最大化,从而实现了铁磁到顺磁动力学相变。
Engineering a Hamiltonian system with tunable interactions provides opportunities to optimize performance for quantum sensing and explore emerging phenomena of many-body systems. An optical lattice clock based on partially delocalized Wannier-Stark states in a gravity-tilted shallow lattice supports superior quantum coherence and adjustable interactions via spin-orbit coupling, thus presenting a powerful spin model realization. The relative strength of the on-site and off-site interactions can be tuned to achieve a zero density shift at a `magic' lattice depth. This mechanism, together with a large number of atoms, enables the demonstration of the most stable atomic clock while minimizing a key systematic uncertainty related to atomic density. Interactions can also be maximized by driving off-site Wannier-Stark transitions, realizing a ferromagnetic to paramagnetic dynamical phase transition.