论文标题

具有组织视角的自动本体生成框架

An Automatic Ontology Generation Framework with An Organizational Perspective

论文作者

Elnagar, Samaa, Yoon, Victoria, Thomas, Manoj A.

论文摘要

本体论以其知识的语义表示而闻名。本体论无法自动发展以反映各自域中发生的更新。为了解决这一限制,研究人员呼吁从非结构化文本语料库中自动生成本体论。不幸的是,旨在通过非结构化文本语料库生成本体的系统是特定领域的,需要手动干预。此外,他们在建立概念链接和难以为同一概念寻找公理方面的困难时遭受了不确定性。知识图(KGS)已成为知识动态表示的强大模型。但是,公斤具有许多质量限制,需要广泛的改进。这项研究旨在开发一种独立于领域的自动本体生成框架,该框架将非结构化的文本语料库转换为一致的本体论形式。该框架从非结构化的文本语料库中生成kgs,并完善并纠正它们以与域本体学一致。所提出的自动生成本体论的力量是,它整合了KG的动态特征和本体论的质量特征。

Ontologies have been known for their semantic representation of knowledge. ontologies cannot automatically evolve to reflect updates that occur in respective domains. To address this limitation, researchers have called for automatic ontology generation from unstructured text corpus. Unfortunately, systems that aim to generate ontologies from unstructured text corpus are domain-specific and require manual intervention. In addition, they suffer from uncertainty in creating concept linkages and difficulty in finding axioms for the same concept. Knowledge Graphs (KGs) has emerged as a powerful model for the dynamic representation of knowledge. However, KGs have many quality limitations and need extensive refinement. This research aims to develop a novel domain-independent automatic ontology generation framework that converts unstructured text corpus into domain consistent ontological form. The framework generates KGs from unstructured text corpus as well as refine and correct them to be consistent with domain ontologies. The power of the proposed automatically generated ontology is that it integrates the dynamic features of KGs and the quality features of ontologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源