论文标题
使用机器学习模仿光环 - 盖拉克斯连接
Mimicking the halo-galaxy connection using machine learning
论文作者
论文摘要
阐明星系属性与其托管光环的性质之间的连接是星系形成的关键元素。当还在考虑对象的空间分布时,它与宇宙学测量非常相关。在本文中,我们使用机器学习技术来分析Illustristng300磁性流体动力学模拟中的这些复杂关系,从而预测了Halo特性的最终性质。我们采用了四种不同的算法:极端随机的树木,最近的邻居,轻度梯度提升机和神经网络,以及所有四种方法的独特而有力的组合。总体而言,不同的算法在预测一组输入光环特性的星系性能方面产生一致的结果,包括光环质量,浓度,自旋和光晕密度。对于恒星质量,皮尔逊相关系数为0.98,对于特定的恒星形成速率(SSFR),颜色和尺寸,降至0.7-0.8。此外,在这种情况下,我们首次申请了现有的数据增强方法,合成的少数群体过度采样技术,用于使用高斯噪声(Smogn)回归,旨在减轻数据集不平衡的问题,表明它改善了预测的分布的整体形状,并在Halo-Galaxy关系中散布了。我们还证明,我们的预测足以复制多个星系群体的功率谱,该群体以高度准确性地定义为恒星质量,SSFR,颜色和大小。我们的结果与以前的报告保持一致,表明某些星系性能不能仅使用光环特征再现。
Elucidating the connection between the properties of galaxies and the properties of their hosting haloes is a key element in galaxy formation. When the spatial distribution of objects is also taken under consideration, it becomes very relevant for cosmological measurements. In this paper, we use machine learning techniques to analyse these intricate relations in the IllustrisTNG300 magnetohydrodynamical simulation, predicting baryonic properties from halo properties. We employ four different algorithms: extremely randomized trees, K-nearest neighbours, light gradient boosting machine, and neural networks, along with a unique and powerful combination of the results from all four approaches. Overall, the different algorithms produce consistent results in terms of predicting galaxy properties from a set of input halo properties that include halo mass, concentration, spin, and halo overdensity. For stellar mass, the Pearson correlation coefficient is 0.98, dropping down to 0.7-0.8 for specific star formation rate (sSFR), colour, and size. In addition, we apply, for the first time in this context, an existing data augmentation method, synthetic minority over-sampling technique for regression with Gaussian noise (SMOGN), designed to alleviate the problem of imbalanced data sets, showing that it improves the overall shape of the predicted distributions and the scatter in the halo-galaxy relations. We also demonstrate that our predictions are good enough to reproduce the power spectra of multiple galaxy populations, defined in terms of stellar mass, sSFR, colour, and size with high accuracy. Our results align with previous reports suggesting that certain galaxy properties cannot be reproduced using halo features alone.