论文标题

FNET:对因子调整的网络估计和高维时间序列的预测

FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series

论文作者

Barigozzi, Matteo, Cho, Haeran, Owens, Dom

论文摘要

我们提出了FNET,这是一种网络估计和对高维时间序列的预测的方法,该方法表现出强烈的串行和横截面相关性。我们在因子调整后的载体自回旋(VAR)模型下运行,该模型通过{\ it Common}因素考虑了变量对变量的普遍共同转化后,对剩余的{\ it Itiosyncratic}动态依赖性之间的剩余{\ IT特质}动态相关性进行了建模。 FNET的网络估计由三个步骤组成:(i)通过动态主成分分析进行因子调整,(ii)通过$ \ ell_1 $ regulared Yule-Walker估计器对潜在var过程的估计,以及(iii)部分相关性和长期相关性矩阵的估计。在此过程中,我们学习了三个基于VAR过程的网络,即代表变量之间的Granger因果关系联系的指示网络,一个无方向性的网络,一个无方向性的网络嵌入了他们的同时关系,最后是一个无方向的网络,总结了铅滞后和同时的链接。此外,FNET提供了一套预测因子驱动和特质的方法的方法。在一般条件下,允许尾巴比高斯尾部重,我们在网络估计和预测中得出了估计器的均匀一致性速率,这是面板的尺寸和样本量差异。仿真研究和实际数据应用证实了FNET的良好性能。

We propose FNETS, a methodology for network estimation and forecasting of high-dimensional time series exhibiting strong serial- and cross-sectional correlations. We operate under a factor-adjusted vector autoregressive (VAR) model which, after accounting for pervasive co-movements of the variables by {\it common} factors, models the remaining {\it idiosyncratic} dynamic dependence between the variables as a sparse VAR process. Network estimation of FNETS consists of three steps: (i) factor-adjustment via dynamic principal component analysis, (ii) estimation of the latent VAR process via $\ell_1$-regularised Yule-Walker estimator, and (iii) estimation of partial correlation and long-run partial correlation matrices. In doing so, we learn three networks underpinning the VAR process, namely a directed network representing the Granger causal linkages between the variables, an undirected one embedding their contemporaneous relationships and finally, an undirected network that summarises both lead-lag and contemporaneous linkages. In addition, FNETS provides a suite of methods for forecasting the factor-driven and the idiosyncratic VAR processes. Under general conditions permitting tails heavier than the Gaussian one, we derive uniform consistency rates for the estimators in both network estimation and forecasting, which hold as the dimension of the panel and the sample size diverge. Simulation studies and real data application confirm the good performance of FNETS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源