论文标题
lipschitz的几何形状,正常嵌入的霍尔德三角形
Lipschitz geometry of pairs of normally embedded Hölder triangles
论文作者
论文摘要
我们考虑了真实半格式的外部Bi-lipschitz分类的特殊情况(或更通用的,在多项式界限的O-Wimimal结构中可以定义)表面细菌,该细菌是作为两个正常嵌入的HölderTriangles的结合。我们定义了这种表面细菌的等效类别的组合不变,称为$στ$ -Pizza,并猜想,在这种特殊情况下,它是外部Bi-Lipschitz等效性的完整组合不变。
We consider a special case of the outer bi-Lipschitz classification of real semialgebraic (or, more general, definable in a polynomially bounded o-minimal structure) surface germs, obtained as a union of two normally embedded Hölder triangles. We define a combinatorial invariant of an equivalence class of such surface germs, called $στ$-pizza, and conjecture that, in this special case, it is a complete combinatorial invariant of outer bi-Lipschitz equivalence.