论文标题

超声图像的稳健散射器数密度分割

Robust Scatterer Number Density Segmentation of Ultrasound Images

论文作者

Tehrani, Ali K. Z., Rosado-Mendez, Ivan M., Rivaz, Hassan

论文摘要

定量超声(QUS)旨在使用临床扫描仪的反向散射回声信号揭示有关组织微结构的信息。在不同的QUS参数中,散射数密度是可能影响其他QU参数估计的重要属性。散射数密度可以分为高或低散射剂密度。如果分辨率单元内有10个以上的散射器,则包膜数据被认为是完全开发的斑点(FDS),否则如开发的斑点(UDS)。在常规方法中,信封数据被分为小重叠窗口(我们称为修补程序的策略),并且使用统计参数(例如SNR和Skewness)来对每个信封数据进行分类。但是,这些参数是系统依赖性的,这意味着它们的分布可以通过成像设置和补丁大小来改变。因此,使用相同的成像设置对具有已知散射数密度的参考幻象进行成像,以减轻系统依赖性。在本文中,我们的目标是分割超声数据的区域,而无需进行任何修补。生成了一个大数据集,该数据集具有不同的散点图密度和平均散射幅度的不同形状,并使用快速模拟方法。我们采用卷积神经网络(CNN)进行分割任务,并研究具有不同成像设置的不同数据集测试网络时域移动的效果。 Nakagami参数图像用于多任务学习以提高性能。此外,受到QUS参考幻影方法的启发,提出了一个域适应阶段,该阶段仅需要FDS和UDS类中的两个数据帧。我们评估了不同的实验幻象和体内数据的方法。

Quantitative UltraSound (QUS) aims to reveal information about the tissue microstructure using backscattered echo signals from clinical scanners. Among different QUS parameters, scatterer number density is an important property that can affect estimation of other QUS parameters. Scatterer number density can be classified into high or low scatterer densities. If there are more than 10 scatterers inside the resolution cell, the envelope data is considered as Fully Developed Speckle (FDS) and otherwise, as Under Developed Speckle (UDS). In conventional methods, the envelope data is divided into small overlapping windows (a strategy here we refer to as patching), and statistical parameters such as SNR and skewness are employed to classify each patch of envelope data. However, these parameters are system dependent meaning that their distribution can change by the imaging settings and patch size. Therefore, reference phantoms which have known scatterer number density are imaged with the same imaging settings to mitigate system dependency. In this paper, we aim to segment regions of ultrasound data without any patching. A large dataset is generated which has different shapes of scatterer number density and mean scatterer amplitude using a fast simulation method. We employ a convolutional neural network (CNN) for the segmentation task and investigate the effect of domain shift when the network is tested on different datasets with different imaging settings. Nakagami parametric image is employed for the multi-task learning to improve the performance. Furthermore, inspired by the reference phantom methods in QUS, A domain adaptation stage is proposed which requires only two frames of data from FDS and UDS classes. We evaluate our method for different experimental phantoms and in vivo data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源