论文标题
自动驾驶的潜在基于游戏的决策
Potential Game-Based Decision-Making for Autonomous Driving
论文作者
论文摘要
考虑到多种交通代理(例如自动驾驶汽车(AV),人驾驶员和行人)之间的复杂相互作用以及评估这些相互作用所需的计算负载,因此对自动驾驶的决策具有挑战性。本文开发了两个基于游戏的一般潜在框架,即有限和连续潜在的游戏,用于自动驾驶决策。这两个框架分别解释了AVS的两种类型的动作空间,即有限和连续的动作空间。我们表明,开发的框架提供了理论保证,包括1)存在纯净的NASH平衡,2)纳什平衡(NE)寻求算法的融合,以及3)派生的NE的全球最佳性(从某种意义上说,自我利益和团队利益都得到了优化)。此外,我们还提供了成本函数塑造方法,用于在自动驾驶中构建多代理潜在游戏。此外,为每个游戏开发了两种解决方案算法,包括自我播放动力学(例如最佳响应动力学)和潜在功能优化。然后将开发的框架应用于两种不同的交通情况,包括在高速公路上进行交叉交叉和改变车道。统计比较研究,包括1)有限潜在游戏与连续潜在游戏,以及2)最佳响应动态与潜在功能优化,以比较不同解决方案算法的性能。结果表明,这两个已开发的框架都是实用的(即计算效率),可靠的(即,在各种情况和情况下导致令人满意的驾驶表演),并且强大(即,使驾驶表现令人满意,从而使驾驶表现不确定,以防止周围车辆的不确定行为)在自动驾驶中进行实时决策。
Decision-making for autonomous driving is challenging, considering the complex interactions among multiple traffic agents (e.g., autonomous vehicles (AVs), human drivers, and pedestrians) and the computational load needed to evaluate these interactions. This paper develops two general potential game based frameworks, namely, finite and continuous potential games, for decision-making in autonomous driving. The two frameworks account for the AVs' two types of action spaces, i.e., finite and continuous action spaces, respectively. We show that the developed frameworks provide theoretical guarantees, including 1) existence of pure-strategy Nash equilibria, 2) convergence of the Nash equilibrium (NE) seeking algorithms, and 3) global optimality of the derived NE (in the sense that both self- and team- interests are optimized). In addition, we provide cost function shaping approaches to constructing multi-agent potential games in autonomous driving. Moreover, two solution algorithms, including self-play dynamics (e.g., best response dynamics) and potential function optimization, are developed for each game. The developed frameworks are then applied to two different traffic scenarios, including intersection-crossing and lane-changing in highways. Statistical comparative studies, including 1) finite potential game vs. continuous potential game, and 2) best response dynamics vs. potential function optimization, are conducted to compare the performances of different solution algorithms. It is shown that both developed frameworks are practical (i.e., computationally efficient), reliable (i.e., resulting in satisfying driving performances in diverse scenarios and situations), and robust (i.e., resulting in satisfying driving performances against uncertain behaviors of the surrounding vehicles) for real-time decision-making in autonomous driving.