论文标题

平衡袋装合奏的性能和能耗,以分类边缘计算中的数据流

Balancing Performance and Energy Consumption of Bagging Ensembles for the Classification of Data Streams in Edge Computing

论文作者

Cassales, Guilherme, Gomes, Heitor, Bifet, Albert, Pfahringer, Bernhard, Senger, Hermes

论文摘要

近年来,Edge Computing(EC)范式已成为开发诸如物联网(IoT)和5G网络之类的技术的有推动因素,从而弥合了云计算服务与最终用户之间的差距,从而支持低潜伏期,移动性,移动性和位置认识以延迟敏感的应用程序。 EC中的大多数解决方案都采用机器学习(ML)方法来执行数据分类和其他信息处理任务,以进行连续和不断发展的数据流。通常,此类解决方案必须应对大量数据作为数据流,同时平衡算法的能耗,延迟和预测性能。由于多种模型的组合以及选择性重置的可能性,集合方法应用于不断发展的数据流时,实现了显着的预测性能。这项工作调查了优化性能(即延迟,吞吐量)和装袋合奏以对数据流进行分类的策略。实验评估涉及六种最先进的集合算法(Ozabag,Ozabag自适应尺寸Hoeffding树,在线袋装Adwin,利用装袋,自适应随机孔和流动随机补丁),应用五个广泛使用的机器学习基准数据集在三个计算机平台上具有各种特征。在评估的96%的实验场景中,这种策略可以大大减少能源消耗。尽管取消了权衡,但仍有可能平衡它们,以避免预测性能的重大损失。

In recent years, the Edge Computing (EC) paradigm has emerged as an enabling factor for developing technologies like the Internet of Things (IoT) and 5G networks, bridging the gap between Cloud Computing services and end-users, supporting low latency, mobility, and location awareness to delay-sensitive applications. Most solutions in EC employ machine learning (ML) methods to perform data classification and other information processing tasks on continuous and evolving data streams. Usually, such solutions have to cope with vast amounts of data that come as data streams while balancing energy consumption, latency, and the predictive performance of the algorithms. Ensemble methods achieve remarkable predictive performance when applied to evolving data streams due to the combination of several models and the possibility of selective resets. This work investigates strategies for optimizing the performance (i.e., delay, throughput) and energy consumption of bagging ensembles to classify data streams. The experimental evaluation involved six state-of-art ensemble algorithms (OzaBag, OzaBag Adaptive Size Hoeffding Tree, Online Bagging ADWIN, Leveraging Bagging, Adaptive RandomForest, and Streaming Random Patches) applying five widely used machine learning benchmark datasets with varied characteristics on three computer platforms. Such strategies can significantly reduce energy consumption in 96% of the experimental scenarios evaluated. Despite the trade-offs, it is possible to balance them to avoid significant loss in predictive performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源