论文标题
泰勒(Taylor)的最佳界限
Optimal bounds in Taylor--Couette flow
论文作者
论文摘要
本文与在带有固定的外缸的Taylor-couette流的背景方法的框架中获得的平均量(扭矩,耗散和努塞尔数)有关的最佳上限。一路上,我们对层流进行了能量稳定性分析,并证明低于半径比0.0556,边缘稳定的扰动不是轴对称的泰勒涡流,而是完全三维流量。本文的主要结果是最佳结合的分析表达是半径比的函数。为了获得这种结合,我们首先使用分析技术得出次优的分析结合。我们使用两个边界层的背景流的定义,其相对厚度被优化以获得结合。在较高雷诺数的限制中,这种次级绑定在半径比(几何缩放)上的依赖性与在三种不同情况下的数值计算最佳界限相同:(1)扰动流动的流动仅满足同质的边界,但不需要易用的(3)(3)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)流量是二维且不可压缩的。我们将几何缩放比较与湍流泰勒流的观测值进行了比较,并发现分析结果确实与可用的DNS数据非常吻合。在本文中,我们还驳回了背景方法对某些流问题的适用性,因此确定了该方法的限制。
This paper is concerned with the optimal upper bound on mean quantities (torque, dissipation and the Nusselt number) obtained in the framework of the background method for the Taylor--Couette flow with a stationary outer cylinder. Along the way, we perform the energy stability analysis of the laminar flow, and demonstrate that below radius ratio 0.0556, the marginally stable perturbations are not the axisymmetric Taylor vortices but rather a fully three-dimensional flow. The main result of the paper is an analytical expression of the optimal bound as a function of the radius ratio. To obtain this bound, we begin by deriving a suboptimal analytical bound using analysis techniques. We use a definition of the background flow with two boundary layers, whose relative thicknesses are optimized to obtain the bound. In the limit of high Reynolds number, the dependence of this suboptimal bound on the radius ratio (the geometrical scaling) turns out to be the same as that of numerically computed optimal bounds in three different cases: (1) where the perturbed flow only satisfies the homogeneous boundary conditions but need not be incompressible, (2) the perturbed flow is three dimensional and incompressible, (3) the perturbed flow is two dimensional and incompressible. We compare the geometrical scaling with the observations from the turbulent Taylor--Couette flow, and find that the analytical result indeed agrees well with the available DNS data. In this paper, we also dismiss the applicability of the background method to certain flow problems and therefore establish the limitation of this method.