论文标题
使用登记辅助原型学习的跨机构男性骨盆器官的几个图像分割
Few-shot image segmentation for cross-institution male pelvic organs using registration-assisted prototypical learning
论文作者
论文摘要
追求新的类别或病理结构等新型类别的医学图像分割网络的能力,当时只能从本地医疗保健提供者那里获得该类别的少数标签示例时。这可能解决了将现代深度学习模型部署到临床实践,专业知识和劳动密集型标签和跨机构概括方面的两个广泛认可的局限性。这项工作使用了来自具有八个感兴趣区域的前列腺癌患者的标记的多机构数据集,介绍了第一个3D少数类别分割网络,用于医学图像。我们提出了一个图像对齐模块,以标准原型学习算法的查询和支持数据的预测分割为参考地图集空间。内置的注册机制可以有效地利用受试者之间一致解剖结构的先验知识,无论他们是否来自同一机构。实验结果表明,提出的注册辅助原型学习显着提高了来自保留机构的查询数据的分割精度(p值<0.01),并且来自多个机构的支持数据的可用性有所不同。我们还报告了拟议的3D网络的其他好处,与现有的2D几次方法相比,参数少75%,并且可以说是简单的实现,这些方法将2D片的2D切片的体积医学图像进行了分割。
The ability to adapt medical image segmentation networks for a novel class such as an unseen anatomical or pathological structure, when only a few labelled examples of this class are available from local healthcare providers, is sought-after. This potentially addresses two widely recognised limitations in deploying modern deep learning models to clinical practice, expertise-and-labour-intensive labelling and cross-institution generalisation. This work presents the first 3D few-shot interclass segmentation network for medical images, using a labelled multi-institution dataset from prostate cancer patients with eight regions of interest. We propose an image alignment module registering the predicted segmentation of both query and support data, in a standard prototypical learning algorithm, to a reference atlas space. The built-in registration mechanism can effectively utilise the prior knowledge of consistent anatomy between subjects, regardless whether they are from the same institution or not. Experimental results demonstrated that the proposed registration-assisted prototypical learning significantly improved segmentation accuracy (p-values<0.01) on query data from a holdout institution, with varying availability of support data from multiple institutions. We also report the additional benefits of the proposed 3D networks with 75% fewer parameters and an arguably simpler implementation, compared with existing 2D few-shot approaches that segment 2D slices of volumetric medical images.