论文标题
超导螺旋谐振器中用于超材料应用的射频站立波的相位分辨可视化
Phase-resolved visualization of radio-frequency standing waves in superconducting spiral resonator for metamaterial applications
论文作者
论文摘要
超导微电路和超材料是新一代低温电子中有希望的候选者。它们的功能在很大程度上是通过排列的单元细胞中电磁场的宏观分布,而不是复合材料的微观特性。我们提出了一种新的方法,可在平面超导型宏观谐振器中以显微镜分辨率来可视化穿透微波的空间结构,这是现代微电子学的最重要的电路形成元素。该方法使用低温激光扫描显微镜,该显微镜检查了局部射频电流的相位(即,方向)和幅度,与正在测试的超导谐振结构的二维坐标相比。相敏感的对比是通过将强度调节激光辐射与通过样品的微波信号的谐振谐波同步的。在这种情况下,激光束诱导的照明区域中的损失将在很大程度上取决于RF载体信号与聚焦激光振荡的空间时间结构之间的局部相差。这种方法消除了射频显微镜现有技术的硬件局限性,并将相敏化的解调模式带到研究超导型超材料物理学所需的水平。与先前的RF激光扫描显微镜相比,提出的方法的优势通过在第38局本本征谐振的螺旋超导下形成的螺旋超导式谐振器中形成站立波的示例。
Superconducting microcircuits and metamaterials are promising candidates for use in new generation cryogenic electronics. Their functionality is largely justified by the macroscopic distribution of electromagnetic fields in arranged unit cells, rather than by the microscopic properties of composite materials. We present a new method for visualizing the spatial structure of penetrating microwaves with microscopic resolution in planar superconducting macroscopic resonators as the most important circuit-forming elements of modern microelectronics. This method uses a low-temperature laser scanning microscope that examines the phase (i.e., direction) and amplitude of local radio-frequency currents versus the two-dimensional coordinates of the superconducting resonant structure under test. Phase-sensitive contrast is achieved by synchronizing the intensity-modulated laser radiation with the resonant harmonics of the microwave signal passing through the sample. In this case, the laser-beam-induced loss in the illuminated area will strongly depend on the local phase difference between the RF carrier signal and the spatially temporal structure of the focused laser oscillation. This approach eliminates the hardware limitations of the existing technique of radio-frequency microscopy and brings the phase-sensitive demodulation mode to the level necessary for studying the physics of superconducting metamaterials. The advantage of the presented method over the previous method of RF laser scanning microscopy is demonstrated by the example of the formation of standing waves in a spiral superconducting Archimedean resonator up to the 38th eigenmode resonance.