论文标题

RRAM体系结构的密集和稀疏映射方案的设计空间探索

Design Space Exploration of Dense and Sparse Mapping Schemes for RRAM Architectures

论文作者

Lammie, Corey, Eshraghian, Jason K., Li, Chenqi, Amirsoleimani, Amirali, Genov, Roman, Lu, Wei D., Azghadi, Mostafa Rahimi

论文摘要

设备和电路级效应在混合信号电阻随机访问记忆(RRAM)加速器中的影响通常表现为深度学习(DL)算法的性能降解,但是影响程度会根据算法特征而变化。这些包括网络体系结构,容量,重量分布以及层间连接的类型。技术正在不断出现,以有效地训练稀疏的神经网络,这些神经网络可能具有激活稀疏性,量化和磁性噪声。在本文中,我们提出了扩展的设计空间探索(DSE)方法,以量化对各种网络体系结构的密集和稀疏映射方案的好处和局限性。尽管连通性的稀疏性促进了较少的功耗,并且经常被优化用于提取局部特征,但与密集的映射方案相比,由于参数不足,其在瓷砖RRAM阵列上的性能可能更容易受到噪声的影响。此外,我们提出了一项案例研究,以量化和形式化了使用CIFAR-10数据集中引入的典型非理想性(1T1R)瓷砖磁盘架构和模块化跨板瓷砖的大小。

The impact of device and circuit-level effects in mixed-signal Resistive Random Access Memory (RRAM) accelerators typically manifest as performance degradation of Deep Learning (DL) algorithms, but the degree of impact varies based on algorithmic features. These include network architecture, capacity, weight distribution, and the type of inter-layer connections. Techniques are continuously emerging to efficiently train sparse neural networks, which may have activation sparsity, quantization, and memristive noise. In this paper, we present an extended Design Space Exploration (DSE) methodology to quantify the benefits and limitations of dense and sparse mapping schemes for a variety of network architectures. While sparsity of connectivity promotes less power consumption and is often optimized for extracting localized features, its performance on tiled RRAM arrays may be more susceptible to noise due to under-parameterization, when compared to dense mapping schemes. Moreover, we present a case study quantifying and formalizing the trade-offs of typical non-idealities introduced into 1-Transistor-1-Resistor (1T1R) tiled memristive architectures and the size of modular crossbar tiles using the CIFAR-10 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源