论文标题
数据驱动的基于深度学习的杂种杂交质合面向带有隐式CSI的空中巨大MIMO-OFDM系统
Data-Driven Deep Learning Based Hybrid Beamforming for Aerial Massive MIMO-OFDM Systems with Implicit CSI
论文作者
论文摘要
在空中杂种大规模多输入多输出(MIMO)和正交频施加多路复用(OFDM)系统中,如何设计具有有限的飞行员和反馈开销的频谱效率宽带多用户混合波束,这是具有挑战性的。为此,通过将关键传输模块建模为端到端(E2E)神经网络,本文提出了一个基于数据驱动的深度学习(DL)的统一统一混合光束框架,该框架为时间划分双工(TDD)和带有隐式通道状态信息(CSI)的频率分配双层链路(TDD)和频次频级二线(TDD)系统。对于TDD系统,提出的基于DL的方法共同对上行链路飞行员组合和下行链路混合光束模块作为E2E神经网络进行建模。对于FDD系统,我们将下行链路飞行器传输,上行链路CSI反馈和下行链路混合束构造模块作为E2E神经网络建模。与分别处理不同模块的常规方法不同,提出的解决方案同时以总和速率作为优化对象优化了所有模块。因此,通过感知空对地面大规模MIMO-OFDM通道样品的固有特性,基于DL的E2E神经网络可以建立从通道到波束形式的映射函数,以便可以通过减少的飞行员和反馈在头顶来避免显式通道重建。此外,实际的低分辨率相位变速器(PSS)引入了量化约束,从而导致训练神经网络时棘手的梯度反向传播。为了减轻阶段量化误差造成的性能损失,我们采用转移学习策略,以基于假定理想的无限分辨率PSS的预训练网络来进一步调整E2E神经网络。数值结果表明,我们的基于DL的方案比最先进的方案具有相当大的优势。
In an aerial hybrid massive multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) system, how to design a spectral-efficient broadband multi-user hybrid beamforming with a limited pilot and feedback overhead is challenging. To this end, by modeling the key transmission modules as an end-to-end (E2E) neural network, this paper proposes a data-driven deep learning (DL)-based unified hybrid beamforming framework for both the time division duplex (TDD) and frequency division duplex (FDD) systems with implicit channel state information (CSI). For TDD systems, the proposed DL-based approach jointly models the uplink pilot combining and downlink hybrid beamforming modules as an E2E neural network. While for FDD systems, we jointly model the downlink pilot transmission, uplink CSI feedback, and downlink hybrid beamforming modules as an E2E neural network. Different from conventional approaches separately processing different modules, the proposed solution simultaneously optimizes all modules with the sum rate as the optimization object. Therefore, by perceiving the inherent property of air-to-ground massive MIMO-OFDM channel samples, the DL-based E2E neural network can establish the mapping function from the channel to the beamformer, so that the explicit channel reconstruction can be avoided with reduced pilot and feedback overhead. Besides, practical low-resolution phase shifters (PSs) introduce the quantization constraint, leading to the intractable gradient backpropagation when training the neural network. To mitigate the performance loss caused by the phase quantization error, we adopt the transfer learning strategy to further fine-tune the E2E neural network based on a pre-trained network that assumes the ideal infinite-resolution PSs. Numerical results show that our DL-based schemes have considerable advantages over state-of-the-art schemes.