论文标题

通过共同利益社区揭示音乐流派结构

Unveiling music genre structure through common-interest communities

论文作者

Jiang, Zhiheng, Huynh, Hoai Nguyen

论文摘要

我们使用9000多个用户在15年内编写的90,000多个金属音乐评论的数据集,借助审核文本信息分析了金属音乐的流派结构。我们根据书面评论,使用面向用户的网络对类型之间的关系进行建模。然后,我们执行社区检测并采用网络“平均”方法来获得稳定的流派簇,以分析每个集群中本地和整个网络中全球范围内本地群集的结构。除了识别簇外,我们还使用依赖性解析和修改的项频率 - 逆文档频率来提取每个群集的重要特征。这些结构和审查文本信息可以使我们能够了解音乐受众(粉丝)如何感知相似和不同的流派,并有助于分类具有共同利益用户社区的不同类型,为音乐流派分组提供了一种更客观的方式。此外,该分类还可以帮助推荐引擎提供更多针对性的音乐建议,并有可能帮助音乐家选择音乐流派标签,并设计音乐以根据先前的评论更好地满足受众的喜好。

Using a dataset of more than 90,000 metal music reviews written by over 9,000 users in a period of 15 years, we analyse the genre structure of metal music with the aid of review text information. We model the relationships between genres using a user-oriented network, based on the written reviews. We then perform community detection and employ a network "averaging" method to obtain stable genre clusters, in order to analyse the structures of clusters both locally within each cluster and globally over the entire network. In addition to identifying the clusters, we use Dependency Parsing and modified Term Frequency - Inverse Document Frequency to extract significant and unique features of each cluster. These structures and review text information can allow us to understand how music audience (fans) perceive similar and different genres, and also assist in classifying different genres which share common-interest user communities, offering a more objective way in grouping music genres. Furthermore, the classification can also help recommendation engines provide more targeted suggestions of music, and potentially help musicians to select genre labels for their music, and design music to better cater to preferences of their audiences based on previous reviews.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源