论文标题

涉及Riemann Zeta功能的功能的属性和对数凸的增加

Increasing property and logarithmic convexity of functions involving Riemann zeta function

论文作者

Guo, Bai-Ni, Qi, Feng

论文摘要

令$α> 0 $为常数,令$ \ ell \ ge0 $为整数,让$γ(z)$表示经典的Euler gamma函数。借助Riemann Zeta函数$ζ(z)$的积分表示,借助单调性规则,其比率是两个具有参数的积分的比率,并且通过完整的单调性和函数的另一个属性$ \ frac {1} {1} {e^t-1} $及其衍生物,作者及其衍生物,呈现的作者呈现,该属性呈现,该属性呈现,该功能,该属性,该属性,该功能,该属性,该属性,该属性,该属性,该函数的衍生物属性 (1) for $\ell\ge0$, the function \begin{equation*} x\mapsto\binom{x+α+\ell}α\frac{ζ(x+α)}{ζ(x)} \end{equation*} is increasing from $(1,\infty)$ onto $(0,\infty)$, where $ \ binom {z} {w} $表示扩展的二项式系数; (2)对于$ \ ell \ ge1 $,函数$ x \mapstoγ(x+\ ell)ζ(x)$是$(1,\ infty)$的对数凸上。

Let $α>0$ be a constant, let $\ell\ge0$ be an integer, and let $Γ(z)$ denote the classical Euler gamma function. With the help of the integral representation for the Riemann zeta function $ζ(z)$, by virtue of a monotonicity rule for the ratio of two integrals with a parameter, and by means of complete monotonicity and another property of the function $\frac{1}{e^t-1}$ and its derivatives, the authors present that, (1) for $\ell\ge0$, the function \begin{equation*} x\mapsto\binom{x+α+\ell}α\frac{ζ(x+α)}{ζ(x)} \end{equation*} is increasing from $(1,\infty)$ onto $(0,\infty)$, where $\binom{z}{w}$ denotes the extended binomial coefficient; (2) for $\ell\ge1$, the function $x\mapstoΓ(x+\ell)ζ(x)$ is logarithmically convex on $(1,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源