论文标题

基于合奏的实验设计,用于针对数据获取以告知气候模型

Ensemble-Based Experimental Design for Targeting Data Acquisition to Inform Climate Models

论文作者

Dunbar, Oliver R. A., Howland, Michael F., Schneider, Tapio, Stuart, Andrew M.

论文摘要

校准不确定的GCM参数化所需的数据通常仅在有限的区域或时间段内可用,例如,来自现场活动的观察数据或在本地高分辨率模拟中生成的数据。这就提出了一个问题,即何时何地获取其他数据以最大程度地了解GCM中的参数化。在这里,我们构建了一种新的基于集合的并行算法,以自动将数据采集定位于区域和时间,以最大程度地降低了有关GCM参数的不确定性降低或信息增益。该算法使用贝叶斯框架,该框架利用GCM参数的量化分布作为不确定性的量度。该分布由限于地方地区和时间的时间平均气候统计信息来告知。该算法嵌入了最近开发的校准 - 启发样本(CES)框架中,该框架仅使用$ \ MATHCAL {O}(10^2)$模型评估执行有效的模型校准和不确定性量化,与$ \ Mathcal {o}(O}(O}(10^5)$评估相比,对于传统方法进行了典型的评估。我们使用理想化的GCM演示了算法,并通过该算法生成本地数据的替代物。在这种完美模型的环境中,我们在GCM中的准平衡对流方案中校准参数并量化不确定性。我们考虑(i)定位于统计固定模拟的空间中的目标数据,以及(ii)在季节性变化的模拟时期内定位于空间和时间。在这些概念验证应用程序中,计算出的信息增益反映了利用目标数据样本时从贝叶斯推断获得的参数不确定性的降低。最大的信息通常是从受热带收敛区(ITCZ)附近的地区获得的,但并非总是如此。

Data required to calibrate uncertain GCM parameterizations are often only available in limited regions or time periods, for example, observational data from field campaigns, or data generated in local high-resolution simulations. This raises the question of where and when to acquire additional data to be maximally informative about parameterizations in a GCM. Here we construct a new ensemble-based parallel algorithm to automatically target data acquisition to regions and times that maximize the uncertainty reduction, or information gain, about GCM parameters. The algorithm uses a Bayesian framework that exploits a quantified distribution of GCM parameters as a measure of uncertainty. This distribution is informed by time-averaged climate statistics restricted to local regions and times. The algorithm is embedded in the recently developed calibrate-emulate-sample (CES) framework, which performs efficient model calibration and uncertainty quantification with only $\mathcal{O}(10^2)$ model evaluations, compared with $\mathcal{O}(10^5)$ evaluations typically needed for traditional approaches to Bayesian calibration. We demonstrate the algorithm with an idealized GCM, with which we generate surrogates of local data. In this perfect-model setting, we calibrate parameters and quantify uncertainties in a quasi-equilibrium convection scheme in the GCM. We consider targeted data that are (i) localized in space for statistically stationary simulations, and (ii) localized in space and time for seasonally varying simulations. In these proof-of-concept applications, the calculated information gain reflects the reduction in parametric uncertainty obtained from Bayesian inference when harnessing a targeted sample of data. The largest information gain typically, but not always, results from regions near the intertropical convergence zone (ITCZ).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源