论文标题

带有蒙版自动编码器的时间序列

Time Series Generation with Masked Autoencoder

论文作者

Zha, Mengyue, Wong, SiuTim, Liu, Mengqi, Zhang, Tong, Chen, Kani

论文摘要

本文表明,具有外推(Extramae)的蒙面自动编码器是时间序列生成的可扩展自我监督模型。 Extramae随机掩盖了原始时间序列的一些补丁,并通过恢复蒙版贴片来学习时间动力学。我们的方法具有两个核心设计。首先,Extramae是自我监督的。监督使Extramae能够有效,有效地捕获原始时间序列的时间动态。其次,Extramae提出了一个外推子,以解开解码器的两个作业:恢复潜在表示并将它们映射到功能空间中。这些独特的设计使Extramae能够在时间序列的生成中始终如一地超过最先进的(SOTA)基准。轻巧的体系结构也使Extramae快速可扩展。 Extramae在各种下游任务中表现出杰出的行为,例如时间序列分类,预测和插补。作为一个自我监管的生成模型,Extramae允许明确管理合成数据。我们希望本文能够以自我监督的模型来迎来时间序列的新时代。

This paper shows that masked autoencoder with extrapolator (ExtraMAE) is a scalable self-supervised model for time series generation. ExtraMAE randomly masks some patches of the original time series and learns temporal dynamics by recovering the masked patches. Our approach has two core designs. First, ExtraMAE is self-supervised. Supervision allows ExtraMAE to effectively and efficiently capture the temporal dynamics of the original time series. Second, ExtraMAE proposes an extrapolator to disentangle two jobs of the decoder: recovering latent representations and mapping them back into the feature space. These unique designs enable ExtraMAE to consistently and significantly outperform state-of-the-art (SoTA) benchmarks in time series generation. The lightweight architecture also makes ExtraMAE fast and scalable. ExtraMAE shows outstanding behavior in various downstream tasks such as time series classification, prediction, and imputation. As a self-supervised generative model, ExtraMAE allows explicit management of the synthetic data. We hope this paper will usher in a new era of time series generation with self-supervised models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源