论文标题
Biag $ _2 $ Surface的激光引起的充电和旋转光电流:第一原理基准
Laser-induced charge and spin photocurrents at BiAg$_2$ surface: a first principles benchmark
论文作者
论文摘要
在这里,我们报告了第一原理计算和分析激光诱导的光电在原型Rashba系统表面上。通过指定Keldysh非平衡形式主义与Wannier插值方案相结合,我们执行了原型Biag $ _2 $表面合金的第一原理电子结构计算,这是Rashba模型的众所周知的材料实现。除了非磁基状态外,我们还研究了面内磁化biag $ _2 $的情况。我们计算非磁性和非磁性病例的铁磁病和激光诱导的旋转光电流的激光诱导的光电。我们的结果证实了RashBA模型预测的非常大的面内光电流的出现。所得的光电流满足所有对称限制,相对于光螺旋和磁化方向。我们根据系统的AB-Initio多波段电子结构提供了对计算电流的对称性和大小的微观见解,并仔细检查了驱动电流的共振两波段和三波段过渡的重要性,从而在Rashba样表面和Interface上建立了光电流的基准图片。我们的工作有助于研究界面Rashba旋转轨道相互作用的作用,这是生成面内光电流的机制,在超快和Terahertz Spintronics领域中引起了极大的兴趣。
Here, we report first principles calculations and analysis of laser-induced photocurrents at the surface of a prototype Rashba system. By referring to Keldysh non-equilibrium formalism combined with the Wannier interpolation scheme we perform first-principles electronic structure calculations of a prototype BiAg$_2$ surface alloy, which is a well-known material realization of the Rashba model. In addition to non-magnetic ground state situation we also study the case of in-plane magnetized BiAg$_2$. We calculate the laser-induced charge photocurrents for the ferromagnetic case and the laser-induced spin photocurrents for both the non-magnetic and the ferromagnetic cases. Our results confirm the emergence of very large in-plane photocurrents as predicted by the Rashba model. The resulting photocurrents satisfy all the symmetry restrictions with respect to the light helicity and the magnetization direction. We provide microscopic insights into the symmetry and magnitude of the computed currents based on the ab-initio multi-band electronic structure of the system, and scrutinize the importance of resonant two-band and three-band transitions for driven currents, thereby establishing a benchmark picture of photocurrents at Rashba-like surfaces and interfaces. Our work contributes to the study of the role of the interfacial Rashba spin-orbit interaction as a mechanism for the generation of in-plane photocurrents, which are of great interest in the field of ultrafast and terahertz spintronics.