论文标题
用于探索具有随机分布的任意封闭轨迹的域的平均弧定理
Mean arc theorem for exploring domains with randomly distributed arbitrary closed trajectories
论文作者
论文摘要
积分几何形状的一个显着结果是凯奇的公式,它的公式将随机越过凸2D域的弹道轨迹的平均路径长度与区域区域及其周边之间的比率联系起来。该定理已被概括为非凸域,并扩展到布朗运动的情况,以在包括生物运动和波浪物理学在内的各个领域找到许多应用。在这里,我们将定理推广到探索任意域的任意封闭轨迹。我们证明,无论轨迹的复杂性如何,平均弧长仍然满足库奇的公式,前提是没有完全包含轨迹。在此阈值以下,平均弧长随轨迹的大小降低。在这种情况下,如果相比,相交凸形域的凸轨迹仍然可以给出近似的分析公式。为了验证我们的分析,我们对探索任意2D域的不同类型的轨迹进行了数值模拟。我们的结果可以应用于从平均第一个入口外观长度中检索有界域的几何信息。
A remarkable result from integral geometry is Cauchy's formula, which relates the mean path length of ballistic trajectories randomly crossing a convex 2D domain, to the ratio between the region area and its perimeter. This theorem has been generalized for non-convex domains and extended to the case of Brownian motion to find many applications in various fields including biological locomotion and wave physics. Here, we generalize the theorem to arbitrary closed trajectories exploring arbitrary domains. We demonstrate that, regardless of the complexity of the trajectory, the mean arc length still satisfies Cauchy's formula provided that no trajectory is entirely contained in the domain. Below this threshold, the mean arc length decreases with the size of the trajectory. In this case, an approximate analytical formula can still be given for convex trajectories intersecting convex domains provided they are small in comparison. To validate our analysis, we performed numerical simulations of different types of trajectories exploring arbitrary 2D domains. Our results could be applied to retrieve geometric information of bounded domains from the mean first entrance-exit length.