论文标题

一种深度学习方法,用于催化材料电子断层扫描中不平衡数据的语义分割

A Deep Learning Approach for Semantic Segmentation of Unbalanced Data in Electron Tomography of Catalytic Materials

论文作者

Genc, Arda, Kovarik, Libor, Fraser, Hamish L.

论文摘要

异质催化剂具有复杂的表面和散装结构,内在的对比度相对较差,并且通常对催化纳米颗粒(NP)的分布稀疏,对图像分割(包括当前的最新深度学习方法)构成了重大挑战。为了解决这个问题,我们将基于深度学习的方法应用于$γ$ -Alumina/pt催化材料的多级语义分割。具体来说,我们将加权焦点损失用作损耗函数,并将其附加到U-NET的完全卷积网络体系结构上。我们使用骰子相似性系数(DSC),召回,精度和Hausdorff距离(HD)指标评估了结果的准确性,该指标在地面和预测的分割之间的重叠上。我们采用的具有加权焦点损失功能的U-NET模型的平均DSC得分为0.96 $ \ pm $ 0.003 $γ$ -Alumina支持材料和0.84 $ \ pm $ \ pm $ 0.03在PT NPS细分任务中。我们报告,对于$γ$ -Alumina和PT NPS段,在HD的第90个百分位时,平均边界误误误少于2 nm。 $γ$ - 铝的复杂表面形态及其与PT NP的关系通过深度学习辅助自动分割的大量数据集的高角度环形暗场(HAADF)扫描透射电子显微镜(STEM)扫描式回形结构的深度数据集来可视化。

Heterogeneous catalysts possess complex surface and bulk structures, relatively poor intrinsic contrast, and often a sparse distribution of the catalytic nanoparticles (NPs), posing a significant challenge for image segmentation, including the current state-of-the-art deep learning methods. To tackle this problem, we apply a deep learning-based approach for the multi-class semantic segmentation of a $γ$-Alumina/Pt catalytic material in a class imbalance situation. Specifically, we used the weighted focal loss as a loss function and attached it to the U-Net's fully convolutional network architecture. We assessed the accuracy of our results using Dice similarity coefficient (DSC), recall, precision, and Hausdorff distance (HD) metrics on the overlap between the ground-truth and predicted segmentations. Our adopted U-Net model with the weighted focal loss function achieved an average DSC score of 0.96 $\pm$ 0.003 in the $γ$-Alumina support material and 0.84 $\pm$ 0.03 in the Pt NPs segmentation tasks. We report an average boundary-overlap error of less than 2 nm at the 90th percentile of HD for $γ$-Alumina and Pt NPs segmentations. The complex surface morphology of the $γ$-Alumina and its relation to the Pt NPs were visualized in 3D by the deep learning-assisted automatic segmentation of a large data set of high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) tomography reconstructions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源