论文标题
黑洞Cygnus X-1的自旋及其积聚磁盘电晕的物理特性的新约束
New Constraints on the Spin of the Black Hole Cygnus X-1 and the Physical Properties of its Accretion Disk Corona
论文作者
论文摘要
我们对中间状态的黑洞Cygnus X-1进行了新的分析,对Nustar和Suzaku观察结果。该分析使用Kerrc,Kerrc是一种新模型,用于分析黑洞的光谱和光谱X射线观测。 Kerrc建立在X射线二进制文件中的大型模拟黑洞库上。该模型解释了X射线的发射,从几何薄,光学厚的吸积盘,X射线通过弯曲的黑洞时空的传播,积聚磁盘的反射以及在反射之前和之后不同3-D形状和物理性能的冠状动脉中的光子构成。我们介绍了使用KERRC来分析2015年5月27日至28日进行的档案Nustar和Suzaku观察结果的结果。最好的楔形电晕比锥形的电晕更合适。尽管我们在黑洞上方和下方的漏斗区域中包括了锥形的冠状动脉,在某种程度上类似于一定程度的假设。分析表明无量纲的黑洞旋转参数A在0.86至0.92之间。 KERRC模型提供了有关返回和冠状发射磁盘能量通量的径向分布的新见解。 Kerrc此外,在最近启动的成像X射线极化探索器的2-8 KEV能量范围内,小极化部分约为1%。
We present a new analysis of NuSTAR and Suzaku observations of the black hole Cygnus X-1 in the intermediate state. The analysis uses kerrC, a new model for analyzing spectral and spectropolarimetric X-ray observations of black holes. kerrC builds on a large library of simulated black holes in X-ray binaries. The model accounts for the X-ray emission from a geometrically thin, optically thick accretion disk, the propagation of the X-rays through the curved black hole spacetime, the reflection off the accretion disk, and the Comptonization of photons in coronae of different 3-D shapes and physical properties before and after the reflection. We present the results from using kerrC for the analysis of archival NuSTAR and Suzaku observations taken on May 27-28, 2015. The best wedge-shaped corona gives a better fit than the cone-shaped corona. Although we included cone-shaped coronae in the funnel regions above and below the black hole to resemble to some degree the common assumption of a compact lamppost corona hovering above and/or below the black hole, the fit chooses a very large version of this corona that makes it possible to Comptonize a sufficiently large fraction of the accretion disk photons to explain the observed power law emission. The analysis indicates a dimensionless black hole spin parameter a between 0.86 and 0.92. The kerrC model provides new insights about the radial distribution of the energy flux of returning and coronal emission irradiating the accretion disk. kerrC furthermore predicts small polarization fractions around 1% in the 2-8 keV energy range of the recently launched Imaging X-ray Polarimetry Explorer.