论文标题
metav:一种元佛教方法,用于任务不合时宜的模型指纹
MetaV: A Meta-Verifier Approach to Task-Agnostic Model Fingerprinting
论文作者
论文摘要
对于模型盗版取证,以前的模型指纹识别方案通常是基于为所有者模型构建的对抗性示例,作为\ textit {指纹{指纹},并验证是否确实通过在彼此之间的指纹示例上与原始模型匹配原始模型是否确实从原始模型中盗用了。但是,这些方法在很大程度上依赖于分类任务的特征,这些任务抑制了它们在更通用方案中的应用。为了解决这个问题,我们介绍了MetAV,这是第一个任务不合时宜的指纹框架框架,它可以在远离下游学习任务的范围内较宽的DNN范围内进行指纹识别,并对各种所有所有权混淆技术表现出强大的鲁棒性。具体而言,我们将先前的方案推广到Metav中的两个关键设计组件:\ textIt {自适应指纹}和\ textit {meta-verifier},它们经过联合优化,以使元verifier学会学会确定一个可疑模型是否基于Suspect of Suspect of Prect figper figner of Aptive figner offinger of fignive finder fign fign。作为任务无关的关键,只有在它们具有相同的输入和输出尺寸时,整个过程才能对集合中的模型内部进行任何假设。跨越分类,回归和生成建模,广泛的实验结果验证了METAV在最先进的指纹方案上的实质性改善,并证明了MetAV的增强性,用于提供任务无关指纹识别。例如,在针对皮肤癌诊断培训的RESNET-18的指纹上,MetAV同时获得$ 100 \%$ $ true的阳性和$ 100 \%$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 220 $可疑模型的测试套装,可实现与最佳基础相比的$ 220 \%$相对改善。
For model piracy forensics, previous model fingerprinting schemes are commonly based on adversarial examples constructed for the owner's model as the \textit{fingerprint}, and verify whether a suspect model is indeed pirated from the original model by matching the behavioral pattern on the fingerprint examples between one another. However, these methods heavily rely on the characteristics of classification tasks which inhibits their application to more general scenarios. To address this issue, we present MetaV, the first task-agnostic model fingerprinting framework which enables fingerprinting on a much wider range of DNNs independent from the downstream learning task, and exhibits strong robustness against a variety of ownership obfuscation techniques. Specifically, we generalize previous schemes into two critical design components in MetaV: the \textit{adaptive fingerprint} and the \textit{meta-verifier}, which are jointly optimized such that the meta-verifier learns to determine whether a suspect model is stolen based on the concatenated outputs of the suspect model on the adaptive fingerprint. As a key of being task-agnostic, the full process makes no assumption on the model internals in the ensemble only if they have the same input and output dimensions. Spanning classification, regression and generative modeling, extensive experimental results validate the substantially improved performance of MetaV over the state-of-the-art fingerprinting schemes and demonstrate the enhanced generality of MetaV for providing task-agnostic fingerprinting. For example, on fingerprinting ResNet-18 trained for skin cancer diagnosis, MetaV achieves simultaneously $100\%$ true positives and $100\%$ true negatives on a diverse test set of $70$ suspect models, achieving an about $220\%$ relative improvement in ARUC in comparison to the optimal baseline.