论文标题

滴乳液中液滴尺寸和有效粘度不对称的物理机制

Physical mechanisms for droplet size and effective viscosity asymmetries in turbulent emulsions

论文作者

Yi, Lei, Wang, Cheng, van Vuren, Thomas, Lohse, Detlef, Risso, Frederic, Toschi, Federico, Sun, Chao

论文摘要

通过改变油体积分数,在泰勒 - 曲线(TC)湍流中研究了微观液滴尺寸和乳液的宏观流变学。尽管乳液中的石油和水具有几乎相同的物理特性(密度和粘度),但出乎意料的是,我们发现水中油(O/W)和油中的油(W/O)乳液具有非常不同的流体动力行为,即该系统显然是不对称的。通过查看微尺度,平均液滴直径几乎不会随着O/W的油量分数而变化,也不适用于w/o。但是,对于W/O,它比O/W大约50%。在宏观尺度上,与W/O相比,O/W的有效粘度更高。这些不对称行为可以追溯到系统中表面污染物的存在。通过在高浓度下引入油溶性表面活性剂,我们可以恢复O/W和W/O乳液之间的对称性(液滴尺寸和有效粘度)。基于此,我们建议一种可能导致初始不对称的机制。接下来,我们讨论什么使湍流乳液中的液滴大小。我们发现液滴大小对流的雷诺数的缩放依赖性。结合缩放依赖性和液滴Weber数,我们得出结论,确定液滴大小的液滴碎片发生在边界层内发生,并由莱维奇(1962)提出的平均流量梯度梯度引起的动态压力控制,而不是由于Kolmogorov(1949)的湍流波动而导致的动态压力。目前的发现提供了对微观液滴形成和动态乳化中的宏观流变行为的理解,并将其连接起来。

By varying the oil volume fraction, the microscopic droplet size and the macroscopic rheology of emulsions are investigated in a Taylor-Couette (TC) turbulent shear flow. Although here oil and water in the emulsions have almost the same physical properties (density and viscosity), unexpectedly, we find that oil-in-water (O/W) and water-in-oil (W/O) emulsions have very distinct hydrodynamic behaviors, i.e., the system is clearly asymmetric. By looking at the micro-scales, the average droplet diameter hardly changes with the oil volume fraction neither for O/W nor for W/O. However, for W/O it is about 50% larger than that of O/W. At the macro-scales, the effective viscosity of O/W is higher when compared to that of W/O. These asymmetric behaviors can be traced back to the presence of surface-active contaminants in the system. By introducing an oil-soluble surfactant at high concentration, remarkably, we recover the symmetry (droplet size and effective viscosity) between O/W and W/O emulsions. Based on this, we suggest a possible mechanism responsible for the initial asymmetry. Next, we discuss what sets the droplet size in turbulent emulsions. We uncover a -6/5 scaling dependence of the droplet size on the Reynolds number of the flow. Combining the scaling dependence and the droplet Weber number, we conclude that the droplet fragmentation, which determines the droplet size, occurs within the boundary layer and is controlled by the dynamic pressure caused by the gradient of the mean flow, as proposed by Levich (1962), instead of the dynamic pressure due to turbulent fluctuations, as proposed by Kolmogorov (1949). The present findings provide an understanding of both the microscopic droplet formation and the macroscopic rheological behaviors in dynamic emulsification, and connects them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源