论文标题

一维扩散过程的时间不一致的平衡

Equilibria of Time-inconsistent Stopping for One-dimensional Diffusion Processes

论文作者

Bayraktar, Erhan, Wang, Zhenhua, Zhou, Zhou

论文摘要

我们考虑文献中提出的三个平衡概念,以解决时间不一致的问题,包括轻度平衡,弱平衡和强烈的平衡。假定折扣功能是对数次加addive的,并且基础过程是一维扩散。我们首先为表征弱平衡提供了必要和充分的条件。平滑拟合条件作为副产品获得。接下来,基于弱平衡的特征,我们表明最佳的轻度平衡也很弱。然后,我们提供弱平衡强度的条件。我们进一步表明,在一定条件下,最佳的轻度平衡也很强。最后,我们提供了几个示例,其中包括一个示例,表明弱平衡可能并不强,并且另一个表明强烈的平衡可能不是最佳的温和。

We consider three equilibrium concepts proposed in the literature for time-inconsistent stopping problems, including mild equilibria, weak equilibria and strong equilibria. The discount function is assumed to be log sub-additive and the underlying process is one-dimensional diffusion. We first provide necessary and sufficient conditions for the characterization of weak equilibria. The smooth-fit condition is obtained as a by-product. Next, based on the characterization of weak equilibria, we show that an optimal mild equilibrium is also weak. Then we provide conditions under which a weak equilibrium is strong. We further show that an optimal mild equilibrium is also strong under a certain condition. Finally, we provide several examples including one shows a weak equilibrium may not be strong, and another one shows a strong equilibrium may not be optimal mild.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源