论文标题
无限型表面端空间的两个结果
Two results on end spaces of infinite type surfaces
论文作者
论文摘要
我们回答了有关无限型表面端空间拓扑的两个问题,以及在文献中出现的映射类组的作用。首先,我们给出了无类型的无限型表面的示例,这些末端空间不是自相似的,而是独特的最大末端类型,无论是单胎还是cantor set。其次,我们使用tsankov的论点表明,最终类型上的“局部复杂性”关系$ \ preccurlyeq $提供了与本地同质形态的概念相同的等价关系。
We answer two questions about the topology of end spaces of infinite type surfaces and the action of the mapping class group that have appeared in the literature. First, we give examples of infinite type surfaces with end spaces that are not self-similar, but a unique maximal type of end, either a singleton or Cantor set. Secondly, we use an argument of Tsankov to show that the "local complexity" relation $\preccurlyeq$ on end types gives an equivalence relation that agrees with the notion of being locally homeomorphic.