论文标题

关于对称相关的高斯来源的分布式有损编码

On Distributed Lossy Coding of Symmetrically Correlated Gaussian Sources

论文作者

Zhou, Siyao, Salehkalaibar, Sadaf, Qian, Jingjing, Chen, Jun, Shi, Wuxian, Ge, Yiqun, Tong, Wen

论文摘要

考虑了带有$ L $编码器和解码器的分布式有损压缩网络。每个编码器都观察一个源并将压缩版本发送到解码器。解码器产生目标信号的联合重建,平方误差失真以下低于给定阈值。假定观察到的来源可以表示为目标信号和腐败噪声的总和,这些噪声是由两个对称的多元高斯分布独立生成的。该网络与失真阈值的最小压缩率称为速率降低函数,通过解决最小化问题来确定明确的下限。我们的下边界与众所周知的Berger-Tung上限匹配了失真阈值的某些值。上限和下限之间的渐近差距在大$ L $限制中的特征。

A distributed lossy compression network with $L$ encoders and a decoder is considered. Each encoder observes a source and sends a compressed version to the decoder. The decoder produces a joint reconstruction of target signals with the mean squared error distortion below a given threshold. It is assumed that the observed sources can be expressed as the sum of target signals and corruptive noises which are independently generated from two symmetric multivariate Gaussian distributions. The minimum compression rate of this network versus the distortion threshold is referred to as the rate-distortion function, for which an explicit lower bound is established by solving a minimization problem. Our lower bound matches the well-known Berger-Tung upper bound for some values of the distortion threshold. The asymptotic gap between the upper and lower bounds is characterized in the large $L$ limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源