论文标题

连贯的滑轮的大厅代数内部的宇宙在复曲面的分辨率上

The universe inside Hall algebras of coherent sheaves on toric resolutions

论文作者

Tsvelikhovskiy, Boris

论文摘要

令$ \ mathfrak {g} \ neq \ mathfrak {so} _8 $成为$ a,d,e $的简单谎言代数,带有$ \ wideHat {\ mathfrak {\ mathfrak {g}} $ \ wideHat {\ mathfrak {g}} $ a nilpotent subalgebra。给定的$ \ mathfrak {n} _- $如上所述,我们提供了以下属性的$ sl_3(\ mathbb {c})$的无限有限的Abelian子组的集合。令$ g $为集合中的任何组,$ y = g \ operatorName { - } \ mbox {hilb}(\ m马理{c}^3)$和$ψ:d^b_g(coh(\ sathbb {c}^3))\ rightArrow d^b(y)我们提出了$ coh_g(\ Mathbb {c}^3)$,s.t。中的对象的(明确描述的)子集。其图像在$ψ$下生成的霍尔代数是$ u(\ mathfrak {n} _-)$的同构。 In case the field $\Bbbk$ (in place of $\mathbb{C}$) is finite and $\mbox{char}(\Bbbk)$ is coprime with the order of $G$, we conjecture the isomorphisms of the corresponding 'counting' Ringel-Hall algebras and the specializations of quantized universal enveloping algebras $ u_v(\ Mathfrak {n} _-)$ v = \ sqrt {| \ bbbk |} $。

Let $\mathfrak{g}\neq \mathfrak{so}_8$ be a simple Lie algebra of type $A,D,E$ with $\widehat{\mathfrak{g}}$ the corresponding affine Kac-Moody algebra and $\mathfrak{n}_-\subset \widehat{\mathfrak{g}}$ a nilpotent subalgebra. Given $\mathfrak{n}_-$ as above, we provide an infinite collection of cyclic finite abelian subgroups of $SL_3(\mathbb{C})$ with the following properties. Let $G$ be any group in the collection, $Y=G\operatorname{-}\mbox{Hilb}(\mathbb{C}^3)$ and $Ψ: D^b_G(Coh(\mathbb{C}^3))\rightarrow D^b(Coh(Y))$ the derived equivalence of Bridgeland, King and Reid. We present an (explicitly described) subset of objects in $Coh_G(\mathbb{C}^3)$, s.t. the Hall algebra generated by their images under $Ψ$ is isomorphic to $U(\mathfrak{n}_-)$. In case the field $\Bbbk$ (in place of $\mathbb{C}$) is finite and $\mbox{char}(\Bbbk)$ is coprime with the order of $G$, we conjecture the isomorphisms of the corresponding 'counting' Ringel-Hall algebras and the specializations of quantized universal enveloping algebras $U_v(\mathfrak{n}_-)$ at $v=\sqrt{|\Bbbk|}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源