论文标题

通过使用辐射频率分音器和软聚合物制成的微型复合材料增强了深层光学声学

Enhanced deep-tissue photoacoustics by using microcomposites made of radiofrequency metamaterials and soft polymers: Double- and triple-resonance phenomena

论文作者

Abraham-Ekeroth, Ricardo Martín

论文摘要

光声成像系统提供了一个具有高分辨率的平台,可以探索身体组织,食物和艺术品。另一方面,血浆构成共振加热和热膨胀的来源,以产生声波。但是,其相关技术严重限于样品中的激光渗透和非特异性高温。 为了解决这个问题,目前的工作采用了光声学的范式转变。通过模拟由随机复合材料制成的微粒,可以使计算的压力与通过等离子光声计算的压力相似或优越。改进是由于一种称为双重或三重共振的现象,这是对射频范围内的一个或磁等离子体的激发以及粒子声模式的同时激发。鉴于电磁脉冲仅限于纳秒脉冲宽度和MHz频率,因此该方法克服了组织中的渗透率不佳并减少了热损伤,从而提供了一种非侵入性的癌症技术。此外,获得的共振压力持续的持续时间比常规光声压力更长,这为增强检测提供了中心特征。为了充分理解多回散框架,我们开发了一个完整的光声解决方案。提出的方法可以为具有微米分辨率的敏感材料和组织的热声成像和操纵方法铺平道路。

Photoacoustic imaging systems offer a platform with high resolution to explore body tissues, food, and artwork. On the other hand, plasmonics constitutes a source of resonant heating and thermal expansion to generate acoustic waves. However, its associated techniques are seriously limited to laser penetration and nonspecific hyperthermia in the sample. To address this issue, the present work adopts a paradigm shift in photoacoustics. By simulating microparticles made of random composites, the calculated pressure can be made similar or superior to that calculated via plasmonic optoacoustics. The improvement is due to a phenomenon called double or triple resonance, which is the excitation of one or both electric and magnetic plasmons within radiofrequency range and the simultaneous excitation of the particle's acoustic mode. Given that electromagnetic pulses are restricted to nanosecond pulse widths and MHz frequencies, the proposed method overcomes the poor penetration in tissues and reduces thermal damage, thereby offering a noninvasive technique of theragnosis. Moreover, the resonant pressure obtained lasts longer than with conventional photoacoustic pressure, providing a central feature to enhance detection. To fully comprehend the multi-resonance framework, we develop a complete photoacoustic solution. The proposed approach could pave the way to thermoacoustic imaging and manipulation methods for sensitive materials and tissues with micrometer resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源